We study the dynamics of rod shaped particles in two-dimensional electromagnetically driven fluid flows. Two separate types of flows that exhibit chaotic mixing are compared: one with time-periodic flow and the other with constant forcing but nonperiodic flow. Video particle tracking is used to make accurate simultaneous measurements of the motion and orientation of rods along with the carrier fluid velocity field. These measurements allow a detailed comparison of the motion and orientation of rods with properties of the carrier flow. Measured rod rotation rates are in agreement with predictions for ellipsoidal particles based on the measured velocity gradients at the center of the rods. There is little dependence on length for the rods we studied ͑up to 53% of the length scale of the forcing͒. Rods are found to align weakly with the extensional direction of the strain-rate tensor. However, the alignment is much stronger with the direction of Lagrangian stretching defined by the eigenvectors of the Cauchy-Green deformation tensor. A simple model of the stretching process predicts the degree of alignment of rods with the stretching direction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.