We present initial results of a deep near-IR spectroscopic survey covering the 15 fields of the Keck Baryonic Structure Survey (KBSS) using MOSFIRE on the Keck 1 telescope, focusing on a sample of 251 galaxies with redshifts 2.0 < z < 2.6, star-formation rates 2 < ∼ SFR < ∼ 200 M yr −1 , and stellar masses 8.6 < log(M * /M ) < 11.4, with high-quality spectra in both H-and K-band atmospheric windows. We show unambiguously that the locus of z ∼ 2.3 galaxies in the "BPT" nebular diagnostic diagram exhibits a disjoint, yet similarly tight, relationship between the ratios [NII]λ6585/Hα and [OIII]/Hβ as compared to local galaxies. Using photoionization models, we argue that the offset of the z ∼ 2.3 locus relative to z ∼ 0 is explained by a combination of harder ionizing radiation field, higher ionization parameter, and higher N/O at a given O/H than applies to most local galaxies, and that the position of a galaxy along the z ∼ 2.3 star-forming BPT locus is surprisingly insensitive to gas-phase oxygen abundance. The observed nebular emission line ratios are most easily reproduced by models in which the net ionizing radiation field resembles a blackbody with effective temperature T eff = 50000 − 60000 K and N/O close to the solar value at all O/H. We critically assess the applicability of commonly-used strong line indices for estimating gas-phase metallicities, and consider the implications of the small intrinsic scatter in the empirical relationship between excitation-sensitive line indices and M * (i.e., the "mass-metallicity" relation), at z 2.3.
Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120 + 0641 at redshift z = 7.09 has remained the only one known at z > 7 for more than half a decade. Here we report observations of the quasar ULAS J134208.10 + 092838.61 (hereafter J1342 + 0928) at redshift z = 7.54. This quasar has a bolometric luminosity of 4 × 10 times the luminosity of the Sun and a black-hole mass of 8 × 10 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old-just five per cent of its current age-reinforces models of early black-hole growth that allow black holes with initial masses of more than about 10 solar masses or episodic hyper-Eddington accretion. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman α emission line (the Gunn-Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342 + 0928 is neutral. We derive such a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.
Direct Lyα imaging of intergalactic gas atz 2 has recently revealed giant cosmological structures around quasars, e.g., the Slug Nebula. Despite their high luminosity, the detection rate of such systems in narrow-band and spectroscopic surveys is less than 10%, possibly encoding crucial information on the distribution of gas around quasars and the quasar emission properties. In this study, we use the MUSE integral-field instrument to perform a blind survey for giant a Ly nebulae around 17 bright radio-quiet quasars at < < z 3 4 that does not suffer from most of the limitations of previous surveys. After data reduction and analysis performed with specifically developed tools, we found that each quasar is surrounded by giant a Ly nebulae with projected sizes larger than 100 physical kiloparsecs and, in some cases, extending up to 320 kpc. The circularly averaged surface brightness profiles of the nebulae appear to be very similar to each other despite their different morphologies and are consistent with power laws with slopes»-1.8. The similarity between the properties of all these nebulae and the Slug Nebula suggests a similar origin for all systems and that a large fraction of gas around bright quasars could be in a relatively "cold" (T ∼ 10 4 K) and dense phase. In addition, our results imply that such gas is ubiquitous within at least 50 kpc from bright quasars at < < z 3 4 independently of the quasar emission opening angle, or extending up to 200 kpc for quasar isotropic emission.
The Advanced Camera for Surveys (ACS) Fornax Cluster Survey is a Hubble Space Telescope program to image 43 early-type galaxies in the Fornax cluster, using the F475W and F850LP bandpasses of the ACS. We employ both 1D and 2D techniques to characterize the properties of the stellar nuclei in these galaxies, defined as the central "luminosity excesses" relative to a Sérsic model fitted to the underlying host. We find 72 ± 13% of our sample (31 galaxies) to be nucleated, with only three of the nuclei offset by more than 0. ′′ 5 from their galaxy photocenter, and with the majority of nuclei having colors bluer than their hosts. The nuclei are observed to be larger, and brighter, than typical Fornax globular clusters, and to follow different structural scaling relations. A comparison of our results to those from the ACS Virgo Cluster Survey reveals striking similarities in the properties of the nuclei belonging to these different environments. We briefly review a variety of proposed formation models and conclude that, for the low-mass galaxies in our sample, the most important mechanism for nucleus growth is probably infall of star clusters through dynamical friction, while for higher mass galaxies, gas accretion triggered by mergers, accretions and tidal torques is likely to dominate, with the relative importance of these two processes varying smoothly as a function of galaxy mass. Some intermediate-mass galaxies in our sample show a complexity in their inner structure that may be the signature of "hybrid nuclei" that arose through parallel formation channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.