Hepatocellular carcinoma (HCC) is a complex and heterogeneous tumor with multiple genetic aberrations. Several molecular pathways involved in the regulation of proliferation and cell death are implicated in the hepatocarcinogenesis. The major etiological factors for HCC are both hepatitis B virus (HBV) and hepatitis C virus infection (HCV).Continuous oxidative stress, which results from the generation of reactive oxygen species (ROS) by environmental factors or cellular mitochondrial dysfunction, has recently been associated with hepatocarcinogenesis. On the other hand, a distinctive pathological hallmark of HCC is a dramatic down-regulation of oxido-reductive enzymes that constitute the most important free radical scavenger systems represented by catalase, superoxide dismutase and glutathione peroxidase.The multikinase inhibitor sorafenib represents the most promising target agent that has undergone extensive investigation up to phase III clinical trials in patients with advanced HCC. The combination with other target-based agents could potentiate the clinical benefits obtained by sorafenib alone. In fact, a phase II multicenter study has demonstrated that the combination between sorafenib and octreotide LAR (So.LAR protocol) was active and well tolerated in advanced HCC patients.The detection of molecular factors predictive of response to anti-cancer agents such as sorafenib and the identification of mechanisms of resistance to anti-cancer agents may probably represent the direction to improve the treatment of HCC.
BackgroundCardiotoxicity is a major complication of anticancer drugs, including anthracyclines and 5-fluorouracil(5-FU) and it can have detrimental effects both in patients and workers involved in the preparation of chemotherapy.MethodsSpecifically, we have assessed the effects of increasing concentrations of 5-FU and doxorubicin (DOXO) on proliferation of H9c2 rat cardiocytes and HT-29 human colon adenocarcinoma cells by MTT assay. Cells were treated for 24, 48 and 72 h with different concentrations of the two drugs alone or with 5-FU in combination with 10-4 M of levofolene (LF).Results5-FU induced a time- and dose-dependent growth inhibition in both cell lines. The 50% growth inhibition (IC:50) was reached at 72 h with concentrations of 4 μM and 400 μM on HT-29 and H9c2, respectively. The addition of LF to 5-FU enhanced this effect. On the other hand, the IC:50 of DOXO was reached at 72 h with concentrations of 0.118 μM on H9c2 and of 0.31 μM for HT-29. We have evaluated the cell death mechanism induced by 50% growth inhibitory concentrations of 5-FU or DOXO in cardiocytes and colon cancer cells. We have found that the treatment with 400 μM 5-FU induced apoptosis in 32% of H9c2 cells. This effect was increased by the addition of LF to 5-FU (38% of apoptotic cells). Apoptosis occurred in only about 10% of HT-29 cells treated with either 5-FU or 5-FU and LF in combination. DOXO induced poor effects on apoptosis of both H9c2 and HT-29 cells (5–7% apoptotic cells, respectively). The apoptosis induced by 5-FU and LF in cardiocytes was paralleled by the activation of caspases 3, 9 and 7 and by the intracellular increase of O2− levels.ConclusionsThese results suggest that cardiotoxic mechanism of chemotherapy agents are different and this disclose a new scenario for prevention of this complication.
We tested for the presence of coronary calcifications in patients with chronic renal disease not on dialysis and studied its progression in 181 consecutive non-dialyzed patients who were followed for a median of 745 days. Coronary calcifications (calcium score) were tallied in Agatston units by computed tomography, and the patients were stratified into two groups by their baseline calcium score (100 U or less and over 100 U). Survival was measured by baseline calcium score and its progression. Cardiac death and myocardial infarction occurred in 29 patients and were significantly more frequent in those patients with calcium scores over 100 U (hazard ratio of 4.11). With a calcium score of 100 U or less, the hazard ratio for cardiac events was 0.41 and 3.26 in patients with absent and accelerated progression, respectively. Thus, in non-dialyzed patients, the extent of coronary calcifications was associated to cardiac events, and progression was an independent predictive factor of cardiac events mainly in less calcified patients. Hence, assessment of coronary calcifications and progression might be useful for earlier management of risk factors and guiding decisions for prevention of cardiac events in this patient population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.