Antitumor immunity driven by intratumoral dendritic cells contributes to the efficacy of anthracycline-based chemotherapy in cancer. We identified a loss-of-function allele of the gene coding for formyl peptide receptor 1 (FPR1) that was associated with poor metastasis-free and overall survival in breast and colorectal cancer patients receiving adjuvant chemotherapy. The therapeutic effects of anthracyclines were abrogated in tumor-bearing Fpr1(-/-) mice due to impaired antitumor immunity. Fpr1-deficient dendritic cells failed to approach dying cancer cells and, as a result, could not elicit antitumor T cell immunity. Experiments performed in a microfluidic device confirmed that FPR1 and its ligand, annexin-1, promoted stable interactions between dying cancer cells and human or murine leukocytes. Altogether, these results highlight the importance of FPR1 in chemotherapy-induced anticancer immune responses.
COPD is characterized by a strong and persistent up-regulation of extracellular ATP in the airways. Extracellular ATP appears to contribute to the pathogenesis of COPD by promoting inflammation and tissue degradation.
The role of strain difference in the response to cigarette smoke was investigated in mice. Mice of the strains DBA/2 and C57BL/6J responded to acute cigarette smoke with a decrease of the antioxidant defenses of their bronchoalveolar lavage (BAL) fluids. On the other hand, under these conditions ICR mice increased their BAL antioxidant defenses. Mice of these three strains were then exposed to cigarette smoke (three cigarettes/d, 5 d/wk) for 7 mo. Lung elastin content was significantly decreased in C57BL/6J and DBA/2 but not in ICR mice. Also, emphysema, assessed morphometrically using three methods, was present in C57BL/6J and DBA/2 but not in ICR mice. In an additional study pallid mice, with a severe serum alpha(1)-proteinase inhibitor (alpha(1)-PI) deficiency and that develop spontaneous emphysema, were exposed to cigarette smoke for 4 mo. This resulted in an acceleration of the development of the spontaneous emphysema assessed with morphometrical and biochemical (lung elastin content) methods. All these results indicate that sensitivity to the effects of cigarette smoke is strain-dependent and cigarette smoke accelerates the effects of alpha(1)-PI deficiency.
Extracellular ATP acts as a "danger signal" and can induce inflammation by binding to purinergic receptors. Chronic obstructive pulmonary disease is one of the most common inflammatory diseases associated with cigarette smoke inhalation, but the underlying mechanisms are incompletely understood. In this study, we show that endogenous pulmonary ATP levels are increased in a mouse model of smoke-induced acute lung inflammation and emphysema. ATP neutralization or nonspecific P2R-blockade markedly reduced smoke-induced lung inflammation and emphysema. We detected an upregulation the purinergic receptors subtypes on neutrophils (e.g., P2Y2R), macrophages, and lung tissue from animals with smoke-induced lung inflammation. By using P2Y 2 R deficient ( 2/2 ) animals, we show that ATP induces the recruitment of blood neutrophils to the lungs via P2Y 2 R. Moreover, P2Y 2 R deficient animals had a reduced pulmonary inflammation following acute smoke-exposure. A series of experiments with P2Y 2 R 2/2 and wild type chimera animals revealed that P2Y 2 R expression on hematopoietic cell plays the pivotal role in the observed effect. We demonstrate, for the first time, that endogenous ATP contributes to smoke-induced lung inflammation and then development of emphysema via activation of the purinergic receptor subtypes, such as P2Y 2 R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.