Relapsed/refractory T cell acute lymphoblastic leukemia (T-ALL) is difficult to salvage especially in heavily pretreated patients, thus novel targeted agents are sorely needed. Hyperactivated JAK/STAT and BCL2 overexpression promote increased T-ALL proliferation and survival, and targeting these pathways with ruxolitinib and venetoclax may provide an alternative approach to achieve clinical remissions. Ruxolitinib and venetoclax show a dosedependent effect individually, but combination treatment synergistically reduces survival and proliferation of Jurkat and Loucy cells in vitro. Using a xenograft CXCR4+ Jurkat model, the combination treatment fails to improve survival, with death from hind limb paralysis. Despite ontarget inhibition by the drugs, histopathology demonstrates increased leukemic infiltration into the central nervous system (CNS), which expresses CXCL12, as compared to liver or bone marrow. Liquid chromatography-tandem mass spectroscopy shows that neither ruxolitinib nor venetoclax can effectively cross the blood-brain barrier, limiting efficacy against CNS T-ALL. Deletion of CXCR4 on Jurkat cells by CRISPR/Cas9 results in prolonged survival and a reduction in overall and neurologic clinical scores. While combination therapy with ruxolitinib and venetoclax shows promise for treating T-ALL, additional inhibition of the CXCR4-CXCL12 axis will be needed to eliminate both systemic and CNS T-ALL burden and maximize the possibility of complete remission.
Treatment of metastatic pediatric solid tumors remain a significant challenge, particularly in relapsed and refractory settings. Standard treatment has included surgical resection, radiation, chemotherapy, and, in the case of neuroblastoma, immunotherapy. Despite such intensive therapy, cancer recurrence is common, and most tumors become refractory to prior therapy, leaving patients with few conventional treatment options. Natural killer (NK) cells are non-major histocompatibility complex (MHC)-restricted lymphocytes that boast several complex killing mechanisms but at an added advantage of not causing graft-versus-host disease, making use of allogeneic NK cells a potential therapeutic option. On top of their killing capacity, NK cells also produce several cytokines and growth factors that act as key regulators of the adaptive immune system, positioning themselves as ideal effector cells for stimulating heavily pretreated immune systems. Despite this promise, clinical efficacy of adoptive NK cell therapy to date has been inconsistent, prompting a detailed understanding of the biological pathways within NK cells that can be leveraged to develop “next generation” NK cell therapies. Here, we review advances in current approaches to optimizing the NK cell antitumor response including combination with other immunotherapies, cytokines, checkpoint inhibition, and engineering NK cells with chimeric antigen receptors (CARs) for the treatment of pediatric solid tumors.
Understanding the role of immune checkpoints has undeniably changed the landscape of cancer immunotherapy. Programmed cell death protein 1 (PD-1) is induced after T cells are activated and serves as a marker of activation that provides inhibitory signals to T cells after engagement of its ligand, programmed death ligand 1 (PD-L1). PD-1 is also a marker of chronic antigen stimulation, since checkpoint blockade with monoclonal antibodies against PD-1 abrogates T cell exhaustion, generating robust antitumor responses (1, 2). Cancers that have been clinically approved for PD-1 inhibition include melanoma, renal cell carcinoma, metastatic non-small cell lung cancer, urothelial carcinoma, classical Hodgkin lymphoma, and others (3, 4). Interestingly PD-1 blockade can induce responses in various cancers with low expression of major histocompatibility complex class I (MHCI), necessary for cytotoxic CD8 + T cell recognition, suggesting enhanced cytolytic activity by CD4 + T cells or effector cells capable of cytotoxicity independently of MHC.NK cells are cytotoxic lymphocytes that can eliminate virally infected cells and tumors using cytotoxicity mechanisms similar to CD8 + T cells, but that do not require recognition of MHC (5). Using deductive reasoning from the "missing self " hypothesis, blocking PD-1 on NK cells may augment antitumor effects for tumors that are refractory to T cell treatments due to low MHC expression (6). The fundamental basis behind applying checkpoint blockade against PD-1 on NK cells must, of course, assume that NK cells express PD-1.
Management for high-risk neuroblastoma (NBL) has included autologous hematopoietic stem cell transplant (HSCT) and anti-GD2 immunotherapy, but survival remains around 50%. The aim of this study was to determine if allogeneic HSCT could serve as a platform for inducing a graft-versus-tumor (GVT) effect against NBL with combination immunocytokine and NK cells in a murine model. Lethally irradiated C57BL/6 (B6) x A/J recipients were transplanted with B6 bone marrow on Day +0. On day +10, allogeneic HSCT recipients were challenged with NXS2, a GD2+ NBL. On days +14-16, mice were treated with the anti-GD2 immunocytokine hu14.18-IL2. In select groups, hu14.18-IL2 was combined with infusions of B6 NK cells activated with IL-15/IL-15Rα and CD137L ex vivo. Allogeneic HSCT alone was insufficient to control NXS2 tumor growth, but the addition of hu14.18-IL2 controlled tumor growth and improved survival. Adoptive transfer of ex vivo CD137L/IL-15/IL-15Rα activated NK cells with or without hu14.18-IL2 exacerbated lethality. CD137L/IL-15/IL-15Rα activated NK cells showed enhanced cytotoxicity and produced high levels of TNF-α in vitro, but induced cytokine release syndrome (CRS) in vivo. Infusing Perforin-/- CD137L/IL-15/IL-15Rα activated NK cells had no impact on GVT, whereas TNF-α-/- CD137L/IL-15/IL-15Rα activated NK cells improved GVT by decreasing peripheral effector cell subsets while preserving tumor-infiltrating lymphocytes. Depletion of Ly49H+ NK cells also improved GVT. Using allogeneic HSCT for NBL is a viable platform for immunocytokines and ex vivo activated NK cell infusions, but must be balanced with induction of CRS. Regulation of TNFα or activating NK subsets may be needed to improve GVT effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.