The application of statistical and Machine Learning models plays a critical role in planning and decision support processes for efficient and reliable Water Distribution Network (WDN) management. Failure models can provide valuable information for prioritizing system rehabilitation even in data scarcity scenarios, such as developing countries. Few studies have analyzed the performance of more than two models, and examples of case studies in developing countries are insufficient. This study compares various statistical and Machine Learning models to provide useful information to practitioners for the selection of a suitable pipe failure model according to information availability and network characteristics. Three statistical models (i.e., Linear, Poisson, and Evolutionary Polynomial Regressions) were used for failure prediction in groups of pipes. Machine Learning approaches, particularly Gradient-Boosted Tree (GBT), Bayes, Support Vector Machines and Artificial Neuronal Networks (ANNs), were compared in predicting individual pipe failure rates. The proposed approach was applied to a WDN in Bogotá (Colombia). The statistical models showed an acceptable performance (R2 between 0.695 and 0.927), but the Poisson Regression was the most suitable for predicting failures in pipes with lower failure rates. Regarding Machine Learning models, Bayes and ANNs exhibited low performance in the prediction of pipe failure condition. The GBT approach had the best performing classifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.