A critical overview of current approaches to the development of starch-containing packaging, integrating the principles of green chemistry (GC), green technology (GT) and green nanotechnology (GN) with those of green packaging (GP) to produce materials important for both us and the planet is given. First, as a relationship between GP and GC, the benefits of natural bioactive compounds are analyzed and the state-of-the-art is updated in terms of the starch packaging incorporating green chemicals that normally help us to maintain health, are environmentally friendly and are obtained via GC. Newer approaches are identified, such as the incorporation of vitamins or minerals into films and coatings. Second, the relationship between GP and GT is assessed by analyzing the influence on starch films of green physical treatments such as UV, electron beam or gamma irradiation, and plasma; emerging research areas are proposed, such as the use of cold atmospheric plasma for the production of films. Thirdly, the approaches on how GN can be used successfully to improve the mechanical properties and bioactivity of packaging are summarized; current trends are identified, such as a green synthesis of bionanocomposites containing phytosynthesized metal nanoparticles. Last but not least, bioinspiration ideas for the design of the future green packaging containing starch are presented.
This research investigates the physical-chemical, sensorial and mechanical characteristics of starch-based edible films incorporating three types of bee hive products: honey, propolis and bee bread, in concentrations varying from 1% to 3%, reported to starch. The results indicates an increasing of films moisture, water activity, ash content and acidity, in the order: honey<propolis<bee bread, all values increasing with the increasing of hive products percentage into the control film; aw is remaining at very low values, under 0.4. Sensorial analysis indicated honey as the better suited for improving taste and flavour and bee bread for increasing colour intensity of the films; the sensorial characteristics are maintained during 30 days of films storage, in all cases. Compared with the control starch-based film (which is elastic, brittle and hard), the films containing 2% bee hive products are elasto-plastic and more resistant to penetration, the resistance increasing in the order: bee bread<propolis<honey.
The application of chemometrics, a widely used science in food studies (and not only food studies) has begun to increase in importance with chemometrics being a very powerful tool in analyzing large numbers of results. In the case of honey, chemometrics is usually used for assessing honey authenticity and quality control, combined with well-established analytical methods. Research related to investigation of the quality changes in honey due to modifications after processing and storage is rare, with a visibly increasing tendency in the last decade (and concentrated on investigating novel methods to preserve the honey quality, such as ultrasound or high-pressure treatment). This review presents the evolution in the last few years in using chemometrics in analyzing honey quality during processing and storage. The advantages of using chemometrics in assessing honey quality during storage and processing are presented, together with the main characteristics of some well-known chemometric methods. Chemometrics prove to be a successful tool to differentiate honey samples based on changes of characteristics during storage and processing.
The aim of this study was to determine the variability of several chemical compounds and the antioxidant and antimicrobial activities of eight types of berries harvested from two different geographical regions in the same year. The analyses were performed on bilberry, black currant, gooseberry, red currant, raspberry, sea buckthorn, strawberry and sour cherry, which were handpicked during the summer of 2019, in the same periods when they are typically harvested for consumer purposes. Total anthocyanins content (TAC), total flavonoids content (TFC), total polyphenolic compounds (TPC), determination of the Ferric-Reducing Antioxidant Power (FRAP), determination of the DPPH free radical scavenging assay (RSA), determination of nine phenolic compounds by HPLC-UV assay and antimicrobial activity were determined for undiluted hydroalcoholic extracts of all the studied berries. The results showed that the berries from Romania were richer in antioxidant compounds than the berries from Russia. The TPC content varied between 4.13–22.2 mg GAE/g d.w., TFC between 3.33–8.87 mg QE/g d.w. and TAC between 0.13–3.94 mg/g d.w. The highest variability was determined for TPC. Regarding the antioxidant activity assessed by FRAP assay, values were between 6.02–57.23 µmols TE/g d.w. and values for the RSA method between 18.44–83.81%. From the eight types of berries analyzed, bilberries and raspberries had the highest antioxidant activity considering both regions and both determination methods. Not only the type, but also the environmental and cultivation conditions in which the berries grow, can lead to variations in their chemical composition. The extracted polyphenolic compounds from the studied berries showed antibacterial properties on pathogens, such as Escherichia coli, Bacillus subtilis and Staphyloccocus aureus. The inhibitory action on Salmonella typhi and fungi Candida albicans and Aspegillus niger was absent to very low. The antimicrobial activity of the hydroalcoholic extracts was dependent on the provenance of the berries, too.
Introduction: Nowadays, plant extracts are highly applied in food industries either as sources of bioactive components or as an alternative to artificial additives. Therefore, food manufacturers are focused on innovative products, which can satisfy consumers' requirements. Objectives: This study investigates the encapsulation of Origanum majorana, Achillea millefolium, Foeniculum vulgare, Juniperus communis and Anethum graveolens EOs in alginate capsules as a means of controlling the fast release of volatile constituents. Materials and Methods: The EOs were obtained via steam distillation. Sodium alginate was chosen as a carrier because of its biodegradable and biocompatible properties. The paper describes the simple dripping technique used for the preparation of the alginate microcapsules with EO cores, and a possible application of the microcapsules as a natural flavor additive. Results: Sensorial properties of the final product were subjectively analyzed and described. The changes of the taste and the flavour of candies in comparison with the control sample were significant. Nevertheless, the strong herbal odour was found as "uncommon in confectionary but pleasant. Conclusion: It has been investigated, that the sodium alginate encapsulated EOs have to be added as a final step of a recipe to save its antimicrobial and antioxidant potential. Further assays need to be performed to investigate the recipe, which includes the EO alginate microcapsules in order to get a high-quality final product that can be used for commercial purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.