[1] Three-dimensional dynamically consistent laboratory models are carried out to model the large-scale mantle circulation induced by subduction of a laterally migrating slab. A laboratory analogue of a slab-upper mantle system is set up with two linearly viscous layers of silicone putty and glucose syrup in a tank. The circulation pattern is continuously monitored and quantitatively estimated using a feature tracking image analysis technique. The effects of plate width and mantle viscosity/density on mantle circulation are systematically considered. The experiments show that rollback subduction generates a complex three-dimensional time-dependent mantle circulation pattern characterized by the presence of two distinct components: the poloidal and the toroidal circulation. The poloidal component is the answer to the viscous coupling between the slab motion and the mantle, while the toroidal one is produced by lateral slab migration. Spatial and temporal features of mantle circulation are carefully analyzed. These models show that (1) poloidal and toroidal mantle circulation are both active since the beginning of the subduction process, (2) mantle circulation is intermittent, (3) plate width affects the velocity and the dimension of subduction induced mantle circulation area, and (4) mantle flow in subduction zones cannot be correctly described by models assuming a two-dimensional steady state process. We show that the intermittent toroidal component of mantle circulation, missed in those models, plays a crucial role in modifying the geometry and the efficiency of the poloidal component.
Plate tectonic history, geological, geochemical (element and isotope ratios), and seismological (P-wave tomography and SKS splitting) data are combined with laboratory modeling to present a three-dimensional reconstruction of the subduction history of the central Mediterranean subduction. We fi nd that the dynamic evolution of the Calabrian slab is characterized by a strong episodicity revealed also by the discrete opening of the Tyrrhenian Sea. The Calabrian slab has been progressively disrupted by means of mechanical and thermal erosion leading to the formation of large windows, both in the southern Tyrrhenian Sea and in the southern Apennines. Windows at lateral slab edges have caused a dramatic reorganization of mantle convection, permitting inflow of subslab mantle material and causing a complicated pattern of magmatism in the Tyrrhenian region, with coexisting K- and Na-alkaline igneous rocks. Rapid, intermittent avalanches of large amounts of lithospheric material at slab edges progressively reduced the lateral length of the Calabrian slab to a narrow (200 km) slab plunging down into the mantle and enhancing the end of the subduction process
[1] Subduction megathrust earthquakes occur at the interface between the subducting and overriding plates. These hazardous phenomena are only partially understood because of the absence of direct observations, the restriction of the instrumental seismic record to the past century, and the limited resolution/completeness of historical to geological archives. To overcome these restrictions, modeling has become a key-tool to study megathrust earthquakes. We present a novel model to investigate the seismic cycle at subduction thrusts using complementary analog (paper 1) and numerical (paper 2) approaches. Here we introduce a simple scaled gelatin-on-sandpaper setup including realistic tectonic loading, spontaneous rupture nucleation, and viscoelastic response of the lithosphere. Particle image velocimetry allows to derive model deformation and earthquake source parameters. Analog earthquakes are characterized by "quasi-periodic" recurrence. Consistent with elastic theory, the interseismic stage shows rearward motion, subsidence in the outer wedge and uplift of the "coastal area" as a response of locked plate interface at shallow depth. The coseismic stage exhibits order of magnitude higher velocities and reversal of the interseismic deformation pattern in the seaward direction, subsidence of the coastal area, and uplift in the outer wedge. Like natural earthquakes, analog earthquakes generally nucleate in the deeper portion of the rupture area and preferentially propagate upward in a crack-like fashion. Scaled rupture width-slip proportionality and seismic moment-duration scaling verifies dynamic similarities with earthquakes. Experimental repeatability is statistically verified. Comparing analog results with natural observations, we conclude that this technique is suitable for investigating the parameter space influencing the subduction interplate seismic cycle.
A new image processing technique-Pyroclast Tracking Velocimetry-was used to analyze a set of 30 high-speed videos of Strombolian explosions from different vents at Stromboli (Italy) and Yasur (Vanuatu) volcanoes. The studied explosions invariably appear to result from the concatenation of up to a hundred individual pyroclast ejection pulses. All these pulses share a common evolution over time, including (1) a non-linear decrease of the pyroclast ejection velocity, (2) an increasing spread of ejection angle, and (3) an increasing size of the ejected pyroclasts. These features reflect the dynamic burst of short-lived gas pockets, in which the rupture area enlarges while pressure differential decreases. We estimated depth of pyroclast release to be approximately 1 and 8 m below the surface at Stromboli and Yasur, respectively. In addition, explosions featuring more frequent pulses also have higher average ejection velocities and larger total masses of pyroclasts. These explosions release a larger overall amount of energy stored in the pressurized gas by a combination of more frequent and stronger ejection pulses. In this context, the associated kinetic energy per explosion, ranging 10 3 -10 9 J appears to be a good proxy for the explosion magnitude. Differences in the pulse-defining parameters among the different vents suggest that this general process is modulated by geometrical factors in the shallow conduit, as well as magma-specific rheology. Indeed, the more viscous melt of Yasur, compared to Stromboli, is associated with larger vents producing fewer pulses but larger pyroclasts.
In paper I [Phys. Fluids 13, 75 (2001)] we provided a theory for simulating anomalous dispersion which relied on the self-part of the intermediate scattering function. Here we obtain Lagrangian trajectories for a conservative tracer in a porous medium and then use these trajectories to obtain the self-part of the intermediate scattering function. We then use the scattering function as data for the inverse problem and obtain the generalized wave-vector and frequency dependent dispersion tensor developed in paper I. The transverse components of this tensor are then examined as a function of wave vector to see if or when the dispersive process goes asymptotic (Fickian). The matched index (of refraction) technique has been used to obtain a transparent porous medium and three dimensional particle tracking has been used to obtain the trajectories. Over the life of the experiment the transverse dispersive process remained anomalous, though it was gradually approaching the Fickian limit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đŸ’™ for researchers
Part of the Research Solutions Family.