Reverse cholesterol transport (RCT) is considered as the most important antiatherogenic role of high-density lipoproteins (HDL), but interventions based on RCT have failed to reduce the risk of coronary heart disease. In contrast to RCT, important evidence suggests that HDL deliver lipids to peripheral cells. Therefore, in this paper, we investigated whether HDL could improve endothelial function by delivering lipids to the cells. Internalization kinetics using cholesterol and apolipoprotein (apo) AI fluorescent double-labeled reconstituted HDL (rHDL), and human dermal microvascular endothelial cells-1 (HMEC-1) showed a fast cholesterol influx (10 min) and a slower HDL protein internalization as determined by confocal microscopy and flow cytometry. Sphingomyelin kinetics overlapped that of apo AI, indicating that only cholesterol became dissociated from rHDL during internalization. rHDL apo AI internalization was scavenger receptor class B type I (SR-BI)-dependent, whereas HDL cholesterol influx was independent of SR-BI and was not completely inhibited by the presence of low-density lipoproteins (LDL). HDL sphingomyelin was fundamental for intercellular adhesion molecule-1 (ICAM-1) downregulation in HMEC-1. However, vascular cell adhesion protein-1 (VCAM-1) was not inhibited by rHDL, suggesting that components such as apolipoproteins other than apo AI participate in HDL’s regulation of this adhesion molecule. rHDL also induced endothelial nitric oxide synthase eNOS S1177 phosphorylation in HMEC-1 but only when the particle contained sphingomyelin. In conclusion, the internalization of HDL implies the dissociation of lipoprotein components and a SR-BI-independent fast delivery of cholesterol to endothelial cells. HDL internalization had functional implications that were mainly dependent on sphingomyelin. These results suggest a new role of HDL as lipid vectors to the cells, which could be congruent with the antiatherogenic properties of these lipoproteins.
Despite strong evidence supporting the cellular interplay between haemostasis and innate immunity, humoral connections between blood coagulation and the behavior of inflammatory macrophages are not well understood. In this study, we investigated changes in gene expression of selected cytokines and chemokines and their secretion profiles following thrombin stimulation of murine macrophages. Thrombin promoted differentiation of macrophages into an M1-like phenotype that was associated with the expression of classical pro-inflammatory markers. The cellular actions of thrombin on macrophages were mediated in part by protease-activated receptor-1 (PAR-1) and were dependent on phosphoinositide 3-kinase/AKT and nuclear factor-κB. Moreover, heat-denatured thrombin stimulated the secretion of some pro-inflammatory mediators to the same magnitude indicating that different receptors transmit cellular signals of enzymatically active thrombin and nonactive thrombin, the latter remaining so far undefined. Finally, pretreatment of macrophages with thrombin resulted in tolerance against secondary stimulation by lipopolysaccharide with regard to expression of tumor necrosis factor-α. These results provide new insights into the molecular link between the key enzyme of haemostasis and innate immunity responses.
BackgroundPrimary cultures endothelial cells have been used as models of endothelial related diseases such atherosclerosis. Biological behavior of primary cultures is donor-dependent and data could not be easily reproducible; endothelial cell lines are emerging options, particularly, human dermal microvascular endothelial cells (HMEC-1), that should be validated to substitute primary cultures for the study of HDL functions.MethodsMorphology, size and granularity of cells were assessed by phase contrast microscopy and flow cytometry of HMEC-1. The adhesion molecules, ICAM-1and VCAM-1 after TNF-α stimulation, and endothelial markers CD105 endoglin, as well as HDL receptor SR-BI were determined by flow cytometry. Internalization of HDL protein was demonstrated by confocal microscopy using HDL labeled with Alexa Fluor 488. HUVECs were used as reference to compared the characteristics with HMEC-1.ResultsHMEC-1 and HUVEC had similar morphologies, size and granularity. HMEC-1 expressed endothelial markers as HUVECs, as well as functional SR-B1 receptor since the cell line was able to internalize HDL particles. HMEC-1 effectively increased ICAM-1 and VCAM-1 expression after TNF-α stimulation. HUVECs showed more sensibility to TNF-α stimulus but the range of ICAM-1 and VCAM-1 expression was less homogeneous than in HMEC-1, probably due to biological variation of the former. Finally, the expression of adhesion molecules in HMEC-1 was attenuated by co-incubation with HDL.ConclusionHMEC-1 possess characteristics of endothelial cells, similar to HUVECs, being a cell line suitable to evaluate the functionality of HDL vis-à-vis the endothelium.
The catabolism and structure of high-density lipoproteins (HDL) may be the determining factor of their atheroprotective properties. To better understand the role of the kidney in HDL catabolism, here we characterized HDL subclasses and the catabolic rates of apo A-I in a rabbit model of proteinuria. Proteinuria was induced by intravenous administration of doxorubicin in New Zealand white rabbits (n = 10). HDL size and HDL subclass lipids were assessed by electrophoresis of the isolated lipoproteins. The catabolic rate of HDL-apo A-I was evaluated by exogenous radiolabelling with iodine-131. Doxorubicin induced significant proteinuria after 4 weeks (4.47 ± 0.55 vs. 0.30 ± 0.02 g/L of protein in urine, P < 0.001) associated with increased uremia, creatininemia, and cardiotoxicity. Large HDL2b augmented significantly during proteinuria, whereas small HDL3b and HDL3c decreased compared to basal conditions. HDL2b, HDL2a, and HDL3a subclasses were enriched with triacylglycerols in proteinuric animals as determined by the triacylglycerol-to-phospholipid ratio; the cholesterol content in HDL subclasses remained unchanged. The fractional catabolic rate (FCR) of [(131)I]-apo A-I in the proteinuric rabbits was faster (FCR = 0.036 h(-1)) compared to control rabbits group (FCR = 0.026 h(-1), P < 0.05). Apo E increased and apo A-I decreased in HDL, whereas PON-1 activity increased in proteinuric rabbits. Proteinuria was associated with an increased number of large HDL2b particles and a decreased number of small HDL3b and 3c. Proteinuria was also connected to an alteration in HDL subclass lipids, apolipoprotein content of HDL, high paraoxonase-1 activity, and a rise in the fractional catabolic rate of the [(131)I]-apo A-I.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.