Helminth eggs are among the most important biological contaminants in environmental engineering. They pose a significant health risk associated with poor sanitation, the use of contaminated water for irrigation, and the disposal of excreta or sludge to land. Helminths are parasitic worms transmitted to humans via their eggs, which is the infective stage of their life cycle. They are therefore relevant to public health and environmental fields due to their low infectious dose, their persistence in the environment (up to several years), and their high resistance to conventional disinfection processes. The evaluation of the efficiency of any process of inactivation, through the determination of the viability of these parasites, is fundamental, but the traditional incubation technique requires 20 days to determine both the viability and the infectivity of nematode eggs. However, the present study found that, using an inactivation process at a temperature of 60 °C for 1 hour and incubation at 28 °C and 34 °C, the absence of division of the nucleus of eggs of species from two genera, Ascaris lumbricoides and Toxocara canis, showed them to be inactivated following only 48 hours of incubation. Similar inactivation results were observed using an automatic system as long as the eggs were inactivated. The minimum time required to evaluate the inactivation of nematode eggs through the incubation technique was 48 hours.
Helminths are parasitic worms that constitute a major public health problem. Conventional analytical techniques to evaluate helminth eggs in environmental samples rely on different steps, namely sedimentation, filtration, centrifugation, and flotation, to separate the eggs from a variety of particles and concentrate them in a pellet for direct observation under an optical microscope. To improve this process, a new approach was implemented in which various image processing algorithms were developed and implemented by a Helminth Egg Automatic Detector (HEAD). This allowed identification and quantification of pathogenic helminth eggs of global medical importance and it was found to be useful for relatively clean wastewater samples. After the initial version, two improvements were developed: first, a texture verification process that reduced the number of false positive results; and second, the establishment of the optimal thresholds (morphology and texture) for each helminth egg species. This second implementation, which was found to improve on the results of the former, was developed with the objective of using free software as a platform for the system. This does not require the purchase of a license, unlike the previous version that required a Mathworks® license to run. After an internal statistical verification of the system was carried out, trials in internationally recognized microbiology laboratories were performed with the aim of reinforcing software training and developing a web-based system able to receive images and perform the analysis throughout a web service. Once completed, these improvements represented a useful and cheap tool that could be used by environmental monitoring facilities and laboratories throughout the world; this tool is capable of identifying and quantifying different species of helminth eggs in otherwise difficult environmental samples: wastewater, soil, biosolids, excreta, and sludge, with a sensitivity and specificity for the TensorFlow (TF) model in the web service values of 96.82% and 97.96% respectively. Additionally, in the case of Ascaris , it may even differentiate between fertile and non-fertile eggs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.