Nanomedicine is becoming very popular over conventional methods due to the ability to tune physico-chemical properties of nanovectors, which are used for encapsulation of therapeutic and diagnostic agents. However, the success of nanomedicine primarily relies on how specifically and efficiently nanocarriers can target pathological sites to minimize undesirable side effects and enhance therapeutic efficacy. Here, we introduce a novel class of targeted nano drug delivery system, which can be used as an effective nano-theranostic for cancer. We formulated pH-sensitive niosomes (80–90 nm in diameter) using non-ionic surfactants Span20 (43–45 mol%), cholesterol (50 mol%) and 5 mol% of pH (Low) Insertion Peptide (pHLIP) conjugated with DSPE lipids (DSPE-pHLIP) or hydrophobic fluorescent dye, pyrene, (Pyr-pHLIP). pHLIP in coating of niosomes was used as an acidity sensitive targeting moiety. We have demonstrated that pHLIP coated niosomes sense the extracellular acidity of cancerous cells. Intravenous injection of fluorescently labeled (R18) pHLIP-coated niosomes into mice bearing tumors showed significant accumulation in tumors with minimal targeting of kidney, liver and muscles. Tumor-targeting niosomes coated with pHLIP exhibited 2–3 times higher tumor uptake compared to the non-targeted niosomes coated with PEG polymer. Long circulation time and uniform bio-distribution throughout the entire tumor make pHLIP-coated niosomes to be an attractive novel delivery system.
Quality, traceability and reproducibility are crucial factors in the reliable manufacture of cellular therapeutics, as part of the overall framework of Good Manufacturing Practice (GMP). As more and more cellular therapeutics progress towards the clinic and research protocols are adapted to comply with GMP standards, guidelines for safe and efficient adaptation have become increasingly relevant. In this paper, we describe the process analysis of megakaryocyte manufacture from induced pluripotent stem cells with a view to manufacturing in vitro platelets to European GMP for transfusion. This process analysis has allowed us an overview of the entire manufacturing process, enabling us to pinpoint the cause and severity of critical risks. Risk mitigations were then proposed for each risk, designed to be GMP compliant. These mitigations will be key in advancing this iPS-derived therapy towards the clinic and have broad applicability to other iPS-derived cellular therapeutics, many of which are currently advancing towards GMP-compliance. Taking these factors into account during protocol design could potentially save time and money, expediting the advent of safe, novel therapeutics from stem cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.