Wetland ecosystems in agricultural areas often become progressively more isolated from main water bodies. Stagnation favors the accumulation of organic matter as the supply of electron acceptors with water renewal is limited. In this context it is expected that nitrogen recycling prevails over nitrogen dissipation. To test this hypothesis, denitrification rates, fluxes of dissolved oxygen (SOD), inorganic carbon (DIC) and nitrogen and sediment features were measured in winter and summer 2007 on 22 shallow riverine wetlands in the Po River Plain (Northern Italy). Fluxes were determined from incubations of intact cores by measurement of concentration changes or isotope pairing in the case of denitrification. Sampled sites were eutrophic to hypertrophic; 10 were connected and 12 were isolated from the adjacent rivers, resulting in large differences in nitrate concentrations in the water column (from \5 to 1,133 lM). Benthic metabolism and denitrification rates were investigated by two overarching factors: season and hydrological connectivity. SOD and DIC fluxes resulted in respiratory quotients greater than one at most sampling sites. Sediment respiration was coupled to both ammonium efflux, which increased from winter to summer, and nitrate consumption, with higher rates in river-connected wetlands. Denitrification rates measured in river-connected wetlands (35-1,888 lmol N m -2 h -1 ) were up to two orders of magnitude higher than rates measured in isolated wetlands (2-231 lmol N m -2 h -1 ), suggesting a strong regulation of the process by nitrate availability. These rates were also significantly higher in summer (9-1,888 lmol N m -2 h -1 ) than in winter (2-365 lmol N m -2 h -1 ). Denitrification supported by water column nitrate (D W ) accounted for 60-100% of total denitrification (Dtot); denitrification coupled to nitrification (D N ) was probably controlled by limited oxygen availability within sediments. Denitrification efficiency, calculated as the ratio between N removal via denitrification and N regeneration, and the relative role of denitrification for organic matter oxidation, were high in connected wetlands but not in isolated sites. This study confirms the importance of restoring hydraulic connectivity of riverine wetlands for the maintenance of important biogeochemical functions such as nitrogen removal via denitrification.
Macrophytes are important components of freshwater ecosystems, playing a relevant role in carbon and nutrient cycles. Notwithstanding their widespread diffusion in temperate to subtropical shallow lakes, little effort has been performed so far in extensively mapping macrophyte communities at regional to continental scale. A rule-based classification scheme was implemented for mapping four macrophyte community types (helophyte, emergent rhizophyte, floating, and submerged-floating association). Input features were selected among multispectral reflectance and multi-temporal vegetation indices, based on Landsat data acquired over four test sites: Lake Taihu (China), Kis-Balaton wetland (Hungary), Lake Trasimeno and Mantua Lakes system (Italy). The best performing features were derived from Water Adjusted Vegetation Index (WAVI) computed at: early spring, maximum growth, and late autumn conditions. Overall accuracy (OA) and Kappa coefficient (k) of macrophyte maps produced with our approach over the ensemble of four sites were 90.1% and 0.865, respectively, with best performance in European temperate areas (OA = 93.6-94.2%, k = 0.887-0.916), and lower scores for subtropical Lake Taihu (OA = 82.8%, k = 0.762). Per-class accuracies were higher than 80% for all target classes, except for the submerged-floating association, with misclassifications concentrated in Taihu site. The robustness of the approach was tested over two independent validation cases: a different site (i.e. Lake Varese, Italy), and a different input dataset (i.e. AVNIR-2 data, for Mantua Lakes system). Consistent accuracy results were achieved: OA = 94.3% (k = 0.922) and OA = 85.6% (k = 0.766), with some misclassification due to spatial resolution of AVNIR-2 data.
This study aims at comparing biogeochemical processes in a Vallisneria spiralis meadow and in unvegetated sediments in the upper reach of the Mincio River (Northern Italy
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.