The impact of the COVID-19 pandemic on excess mortality from all causes in 2020 varied across and within European countries. Using data for 2015–2019, we applied Bayesian spatio-temporal models to quantify the expected weekly deaths at the regional level had the pandemic not occurred in England, Greece, Italy, Spain, and Switzerland. With around 30%, Madrid, Castile-La Mancha, Castile-Leon (Spain) and Lombardia (Italy) were the regions with the highest excess mortality. In England, Greece and Switzerland, the regions most affected were Outer London and the West Midlands (England), Eastern, Western and Central Macedonia (Greece), and Ticino (Switzerland), with 15–20% excess mortality in 2020. Our study highlights the importance of the large transportation hubs for establishing community transmission in the first stages of the pandemic. Here, we show that acting promptly to limit transmission around these hubs is essential to prevent spread to other regions and countries.
BackgroundA relationship between quality of primary health care and preventable hospitalizations has been described in the US, especially among the elderly. In Europe, there has been a recent increase in the evaluation of Ambulatory Care Sensitive Conditions (ACSC) as an indicator of health care quality, but evidence is still limited. The aim of this study was to determine whether income level is associated with higher hospitalization rates for ACSC in adults in a country with universal health care coverage.MethodsFrom the hospital registries in four Italian cities (Turin, Milan, Bologna, Rome), we identified 9384 hospital admissions for six chronic conditions (diabetes, hypertension, congestive heart failure, angina pectoris, chronic obstructive pulmonary disease, and asthma) among 20-64 year-olds in 2000. Case definition was based on the ICD-9-CM coding algorithm suggested by the Agency for Health Research and Quality - Prevention Quality Indicators. An area-based (census block) income index was used for each individual. All hospitalization rates were directly standardised for gender and age using the Italian population. Poisson regression analysis was performed to assess the relationship between income level (quintiles) and hospitalization rates (RR, 95% CI) separately for the selected conditions controlling for age, gender and city of residence.ResultsOverall, the ACSC age-standardized rate was 26.1 per 10.000 inhabitants. All conditions showed a statistically significant socioeconomic gradient, with low income people being more likely to be hospitalized than their well off counterparts. The association was particularly strong for chronic obstructive pulmonary disease (level V low income vs. level I high income RR = 4.23 95%CI 3.37-5.31) and for congestive heart failure (RR = 3.78, 95% CI = 3.09-4.62). With the exception of asthma, males were more vulnerable to ACSC hospitalizations than females. The risks were higher among 45-64 year olds than in younger people.ConclusionsThe socioeconomic gradient in ACSC hospitalization rates confirms the gap in health status between social groups in our country. Insufficient or ineffective primary care is suggested as a plausible additional factor aggravating inequality. This finding highlights the need for improving outpatient care programmes to reduce the excess of unnecessary hospitalizations among poor people.
In this study we present the first comprehensive analysis of the spatio-temporal differences in excess mortality during the COVID-19 pandemic in Italy. We used a population-based design on all-cause mortality data, for the 7,904 Italian municipalities. We estimated sexspecific weekly mortality rates for each municipality, based on the first four months of 2016-2019, while adjusting for age, localised temporal trends and the effect of temperature. Then, we predicted all-cause weekly deaths and mortality rates at municipality level for the same period in 2020, based on the modelled spatio-temporal trends. Lombardia showed higher mortality rates than expected from the end of February, with 23,946 (23,013 to 24,786) total excess deaths. NorthWest and NorthEast regions showed one week lag, with higher mortality from the beginning of March and 6,942 (6,142 to 7,667) and 8,033 (7,061 to 9,044) total excess deaths respectively. We observed marked geographical differences also at municipality level. For males, the city of Bergamo (Lombardia) showed the largest percent excess, 88.9% (81.9% to 95.2%), at the peak of the pandemic. An excess of 84.2% (73.8% to 93.4%) was also estimated at the same time for males in the city of Pesaro (Central Italy), in stark contrast with the rest of the region, which does not show evidence of excess deaths. We provided a fully probabilistic analysis of excess mortality during the COVID-19 pandemic at sub-national level, suggesting a differential direct and indirect effect in space and time. Our model can be used to help policy-makers target measures locally to contain the burden on the health-care system as well as reducing social and economic consequences. Additionally, this framework can be used for real-time mortality surveillance, continuous monitoring of local temporal trends and to flag where and when mortality rates deviate from the expected range, which might suggest a second wave of the pandemic.
Our results indicate that NHL patients experience a higher risk for SMNs than the general population and that various treatments have different impact on RR. More information will be necessary to evaluate possible interactions with genetic susceptibility and environmental exposure.
This paper describes a Bayesian hierarchical approach to predict short-term concentrations of particle pollution in an urban environment, with application to inhalable particulate matter (PM10) in Greater London. We developed and compared several spatiotemporal models that differently accounted for factors affecting the spatiotemporal properties of particle concentrations. We considered two main source contributions to ambient measurements: (i) the long-range transport of the secondary fraction of particles, which temporal variability was described by a latent variable derived from rural concentrations; and (ii) the local primary component of particles (traffic- and non-traffic-related) captured by the output of the dispersion model ADMS-Urban, which site-specific effect was described by a Bayesian kriging. We also assessed the effect of spatiotemporal covariates, including type of site, daily temperature to describe the seasonal changes in chemical processes affecting local PM10 concentrations that are not considered in local-scale dispersion models and day of the week to account for time-varying emission rates not available in emissions inventories. The evaluation of the predictive ability of the models, obtained via a cross-validation approach, revealed that concentration estimates in urban areas benefit from combining the city-scale particle component and the long-range transport component with covariates that account for the residual spatiotemporal variation in the pollution process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.