Sudden cardiac death (SCD) represents about 25% of deaths in clinical cardiology. The identification of risk factors for SCD is the philosopher's stone of cardiology and the identification of non-invasive markers of risk of SCD remains one of the most important goals for the scientific community.The aim of this review is to analyze the state of the art around the heart rate variability (HRV) as a predictor factor for SCD.HRV is probably the most analyzed index in cardiovascular risk stratification technical literature, therefore an important number of models and methods have been developed.Nowadays, low HRV has been shown to be independently predictive of increased mortality in post- myocardial infarction patients, heart failure patients, in contrast with the data of the general population.Contrariwise, the relationship between HRV and SCD has received scarce attention in low-risk cohorts. Furthermore, in general population the attributable risk is modest and the cost/benefit ratio is not always convenient.The HRV evaluation could become an important tool for health status in risks population, even though the use of HRV alone for risk stratification of SCD is limited and further studies are needed.
The orexin-A/hypocretin-1 and orexin-B/hypocretin-2 are neuropeptides synthesized by a cluster of neurons in the lateral hypothalamus and perifornical area. Orexin neurons receive a variety of signals related to environmental, physiological and emotional stimuli, and project broadly to the entire CNS. Orexin neurons are “multi-tasking” neurons regulating a set of vital body functions, including sleep/wake states, feeding behavior, energy homeostasis, reward systems, cognition and mood. Furthermore, a dysfunction of orexinergic system may underlie different pathological conditions. A selective loss orexin neurons was found in narcolepsia, supporting the crucial role of orexins in maintaining wakefulness. In animal models, orexin deficiency lead to obesity even if the consume of calories is lower than wildtype counterpart. Reduced physical activity appears the main cause of weight gain in these models resulting in energy imbalance. Orexin signaling promotes obesity resistance via enhanced spontaneous physical activity and energy expenditure regulation and the deficiency/dysfunction in orexins system lead to obesity in animal models despite of lower calories intake than wildtype associated with reduced physical activity. Interestingly, orexinergic neurons show connections to regions involved in cognition and mood regulation, including hippocampus. Orexins enhance hippocampal neurogenesis and improve spatial learning and memory abilities, and mood. Conversely, orexin deficiency results in learning and memory deficits, and depression.
In the present article, we provide a review of current knowledge regarding the role played by physical activity (PA) in preventing age-related cognitive decline and reducing risk of dementia. The cognitive benefits of PA are highlighted by epidemiological, neuroimaging and behavioral studies. Epidemiological studies identified PA as an influential lifestyle factor in predicting rates of cognitive decline. Individuals physically active from midlife show a reduced later risk of cognitive impairment. Neuroimaging studies documented attenuation of age-related brain atrophy, and also increase of gray matter and white matter of brain areas, including frontal and temporal lobes. These structural changes are often associated with improved cognitive performance. Importantly, the brain regions that benefit from PA are also those regions that are often reported to be severely affected in dementia. Animal model studies provided significant information about biomechanisms that support exercise-enhanced neuroplasticity, such as angiogenesis and upregulation of growth factors. Among the growth factors, the brain-derived neurotrophic factor seems to play a significant role. Another putative factor that might contribute to beneficial effects of exercise is the neuropeptide orexin-A. The beneficial effects of PA may represent an important resource to hinder the cognitive decline associated with aging.
Anabolic androgenic steroids (AAS) are some of the most common drugs used among athletes, frequently in combination with resistance training, to improve physical performance or for aesthetic purpose. A great number of scientific reports showed the detrimental effects of anabolic androgenic steroids on different organs and tissues. In this literature review, we analyzed the AAS-mediated carcinogenicity, focusing on Leydig cell tumor.AAS-induced carcinogenicity can affect DNA transcription through two pathways. It can act directly via the androgen receptor, by means of dihydrotestosterone (DHT) produced by the action of 5-a-reductase. It can also work through the estrogen receptor, by means of estradiol produced by CYP19 aromatase. In addition, nandrolone and stanazolol can activate the PI3K/AKT and PLC/PKC pathways via IGF-1. This would result in cell proliferation in Leydig cell cancer, or magnify cyclin D1 concentration inducing breast cell proliferation.AAS abuse is becoming a serious public health concern in view of the severe health consequences secondary to AAS abuse. The negative role of AAS in supraphysiological dosage impairs the expression of enzymes involved in testosterone biosynthesis. Abnormal synthesis of testosterone plays has a negative effect on the hormonal changes/regulation, and might be involved in certain carcinogenic mechanisms. At the light of this review, it could become very interesting to perform an information campaign more strengthened in gyms and schools in order to prevent male fertility impairment and other tissues damage.
Anabolic androgenic steroids (AAS) are among the drugs most used by athletes for improving physical performance, as well as for aesthetic purposes. A number of papers have showed the side effects of AAS in different organs and tissues. For example, AAS are known to suppress gonadotropin‐releasing hormone, luteinizing hormone, and follicle‐stimulating hormone. This study investigates the effects of nandrolone on testosterone biosynthesis in Leydig cells using various methods, including mass spectrometry, western blotting, confocal microscopy and quantitative real‐time PCR. The results obtained show that testosterone levels increase at a 3.9 μM concentration of nandrolone and return to the basal level a 15.6 μM dose of nandrolone. Nandrolone‐induced testosterone increment was associated with upregulation of the steroidogenic acute regulatory protein (StAR) and downregulation of 17a‐hydroxylase/17, 20 lyase (CYP17A1). Instead, a 15.6 µM dose of nandrolone induced a down‐regulation of CYP17A1. Further in vivo studies based on these data are needed to better understand the relationship between disturbed testosterone homeostasis and reproductive system impairment in male subjects. J. Cell. Physiol. 231: 1385–1391, 2016. © 2015 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.