One of the major challenges in our contemporary society is to facilitate healthy life for all human beings. In this context, cancer has become one of the most deadly diseases around the world, and despite many advances in theranostics techniques the treatment of cancer still remains an important problem. With recent advances made in the field of nano-biotechnology, carbon-based nanostructured materials have drawn special attention because of their unique physicochemical properties, giving rise to great potential for the diagnosis and therapy of cancer. This review deals with four different types of carbon allotrope including carbon nanotubes, graphene, fullerenes and nanodiamonds and summarizes the results of recent studies that are likely to have implications in cancer theranostics. We discuss the applications of these carbon allotropes for cancer imaging and drug delivery, hyperthermia, photodynamic therapy and acoustic wave assisted theranostics. We focus on the results of different studies conducted on functionalized/conjugated carbon nanotubes, graphene, fullerenes and nanodiamond based nanostructured materials reported in the literature in the current decade. The emphasis has been placed on the synthesis strategies, structural design, properties and possible mechanisms that are perhaps responsible for their improved theranostic characteristics. Finally, we discuss the critical issues that may accelerate the development of carbon-based nanostructured materials for application in cancer theranostics.
Amidases are ubiquitous enzymes and biological functions of these enzymes vary widely. In past five decades, they turned out to be an attractive tool in industries for the synthesis of wide variety of carboxylic acids, hydroxamic acids and hydrazide, which find applications in commodity chemicals synthesis, pharmaceuticals agrochemicals and waste water treatments etc. Their proteins structures revealed that aliphatic amidases share the typical a/b hydrolase fold (like nitrilase superfamily) and signature amidases are evolutionary related to aspartic proteinases. They hydrolyse wide variety of amides (short chain aliphatic amides, mid-chain amides, arylamides, a-aminoamides and a-hydroxyamides) and can be grouped on the basis of their catalytic site and preferred substrate. They resist denaturation at extreme of pH and temperature because of their strong and compact multimeric structures. Inhibition studies and three-dimensional analysis of the structures identified a Glu59, Lys134, Cys166 catalytic triad and follow ''Bi-bi Ping-Pong'' mechanism reaction for amide hydrolysis and acyl transferase reactions. Many recombinant amidases have been expressed in Escherichia coli as well as in Brevibacterium lactofermentum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.