Using a set of six 1H-detected triple-resonance NMR experiments, we establish a method for sequence-specific backbone resonance assignment of magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectra of 5–30 kDa proteins. The approach relies on perdeuteration, amide 2H/1H exchange, high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling the use of automated analysis. The method is validated with five examples of proteins in different condensed states, including two microcrystalline proteins, a sedimented virus capsid, and two membrane-embedded systems. In comparison to contemporary 13C/15N-based methods, this approach facilitates and accelerates the MAS NMR assignment process, shortening the spectral acquisition times and enabling the use of unsupervised state-of-the-art computational data analysis protocols originally developed for solution NMR.
The solution structure and stability of N-terminally truncated b2-microglobulin~DN6b2-m!, the major modification in ex vivo fibrils, have been investigated by a variety of biophysical techniques. The results show that DN6b2-m has a free energy of stabilization that is reduced by 2.5 kcal0mol compared to the intact protein. Hydrogen exchange of a mixture of the truncated and full-length proteins at mM concentrations at pH 6.5 monitored by electrospray mass spectrometry reveals that DN6b2-m is significantly less protected than its wild-type counterpart. Analysis of DN6b2-m by NMR shows that this loss of protection occurs in b strands I, III, and part of II. At mM concentration gel filtration analysis shows that DN6b2-m forms a series of oligomers, including trimers and tetramers, and NMR analysis indicates that strand V is involved in intermolecular interactions that stabilize this association. The truncated species of b2-microglobulin was found to have a higher tendency to self-associate than the intact molecule, and unlike wild-type protein, is able to form amyloid fibrils at physiological pH. Limited proteolysis experiments and analysis by mass spectrometry support the conformational modifications identified by NMR and suggest that DN6b2-m could be a key intermediate of a proteolytic pathway of b2-microglobulin. Overall, the data suggest that removal of the six residues from the N-terminus of b2-microglobulin has a major effect on the stability of the overall fold. Part of the tertiary structure is preserved substantially by the disulfide bridge between Cys25 and Cys80, but the pairing between b-strands far removed from this constrain is greatly perturbed.Keywords: amyloidosis; b2-microglobulin; hydrogen exchange mass spectrometry; limited proteolysis; NMR; protein folding Amyloidoses are diseases caused by tissue deposition of protein aggregate organized in an ordered b-sheet structure. The conversion of globular proteins to insoluble fibrillar aggregates requires significant conformational changes, such as the loss of tertiary and quaternary interactions or conversion of a to b secondary structurẽ Sunde & Blake, 1998!. Of the 17 or so proteins implicated in amyloidoses the fibril morphology is indistinguishable and there does not appear to be any common features that link the soluble precursor proteins. For many of these proteins, the amyloid fibril formation is facilitated by amino acid mutations that destabilize the native state and confer a structural flexibility to the molecule, but other proteins like IAPP, wild-type TTR, and b2-microglobulin
We describe a kindred with slowly progressive gastrointestinal symptoms and autonomic neuropathy caused by autosomal dominant, hereditary systemic amyloidosis. The amyloid consists of Asp76Asn variant β(2)-microglobulin. Unlike patients with dialysis-related amyloidosis caused by sustained high plasma concentrations of wild-type β(2)-microglobulin, the affected members of this kindred had normal renal function and normal circulating β(2)-microglobulin values. The Asp76Asn β(2)-microglobulin variant was thermodynamically unstable and remarkably fibrillogenic in vitro under physiological conditions. Previous studies of β(2)-microglobulin aggregation have not shown such amyloidogenicity for single-residue substitutions. Comprehensive biophysical characterization of the β(2)-microglobulin variant, including its 1.40-Å, three-dimensional structure, should allow further elucidation of fibrillogenesis and protein misfolding.
Apolipoprotein A-I, the major structural apolipoprotein of high-density lipoproteins, efficiently protects humans from cholesterol accumulation in tissues; however, it can cause systemic amyloidosis in the presence of peculiar amino acid replacements. The wild-type molecule also has an intrinsic tendency to generate amyloid fibrils that localise within the atherosclerotic plaques. The structure, folding and metabolism of normal apolipoprotein A-I are extremely complex and as yet not completely clarified, but their understanding appears essential for the elucidation of the amyloid transition. We reviewed present knowledge on the structure, function and amyloidogenic propensity of apolipoprotein A-I with the aim of highlighting the possible molecular mechanisms that might contribute to the pathogenesis of this disease. Important clues on apolipoprotein A-I amyloidogenesis may be obtained from classical comparative studies of the properties of the wild-type versus the amyloidogenic counterpart. Additionally, in the case of apoA-I, further insights on the molecular mechanisms underlying its amyloidogenic propensity may derive from comparative studies between amyloidogenic variants and other mutations associated with hypoalphalipoproteinemia without amyloidosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.