Using a set of six 1H-detected
triple-resonance NMR
experiments, we establish a method for sequence-specific backbone
resonance assignment of magic angle spinning (MAS) nuclear magnetic
resonance (NMR) spectra of 5–30 kDa proteins. The approach
relies on perdeuteration, amide 2H/1H exchange,
high magnetic fields, and high-spinning frequencies (ωr/2π ≥ 60 kHz) and yields high-quality NMR data, enabling
the use of automated analysis. The method is validated with five examples
of proteins in different condensed states, including two microcrystalline
proteins, a sedimented virus capsid, and two membrane-embedded systems.
In comparison to contemporary 13C/15N-based
methods, this approach facilitates and accelerates the MAS NMR assignment
process, shortening the spectral acquisition times and enabling the
use of unsupervised state-of-the-art computational data analysis protocols
originally developed for solution NMR.
The Ϸ30-kb coronavirus (؉)RNA genome is replicated and transcribed by a membrane-bound replicase complex made up of 16 viral nonstructural proteins (nsp) with multiple enzymatic activities. The complex includes an RNA endonuclease, NendoU, that is conserved among nidoviruses but no other RNA virus, making it a genetic marker of this virus order. NendoU (nsp15) is a Mn 2؉ -dependent, uridylate-specific enzyme, which leaves 2-3-cyclic phosphates 5 to the cleaved bond. Neither biochemical nor sequence homology criteria allow a classification of nsp15 into existing endonuclease families. Here, we report the crystal structure of the severe acute respiratory syndrome coronavirus nsp15 at 2.6-Å resolution. Nsp15 exhibits a unique fold and assembles into a toric hexamer with six potentially active, peripheric catalytic sites. The structure and the spatial arrangement of the catalytic residues into an RNase A-like active site define a separate endonuclease family, endoU, and represent another spectacular example of convergent evolution toward an enzymatic function that is critically involved in the coronavirus replication cycle.endonuclease ͉ severe acute respiratory syndrome ͉ nidovirus ͉ replication
We describe a kindred with slowly progressive gastrointestinal symptoms and autonomic neuropathy caused by autosomal dominant, hereditary systemic amyloidosis. The amyloid consists of Asp76Asn variant β(2)-microglobulin. Unlike patients with dialysis-related amyloidosis caused by sustained high plasma concentrations of wild-type β(2)-microglobulin, the affected members of this kindred had normal renal function and normal circulating β(2)-microglobulin values. The Asp76Asn β(2)-microglobulin variant was thermodynamically unstable and remarkably fibrillogenic in vitro under physiological conditions. Previous studies of β(2)-microglobulin aggregation have not shown such amyloidogenicity for single-residue substitutions. Comprehensive biophysical characterization of the β(2)-microglobulin variant, including its 1.40-Å, three-dimensional structure, should allow further elucidation of fibrillogenesis and protein misfolding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.