Diclofenac, both from human and veterinary consumption, may arrive in landfills or in the wastewater treatment plants, becoming an environmental pollutant. Therefore, we aimed to study the influence of diclofenac on plants growth and development. We chose as model plant the bean (Phaseolus vulgaris L.) that was watered with different concentrations of aqueous diclofenac solutions (0-0.4 g/L). The plants exhibited linear decreased values of net assimilation rates and stomatal conductance to water vapors with increased diclofenac�s concentrations. Emission of 3-hexenol was determined to scale up with diclofenac concentration, therefore this compound may be proposed as stress marker. Also in the emission of bean plants were detected 3 different monoterpenes (a-pinene, camphene and 3-carene), their concentration increasing with elevated concentration of diclofenac. We can conclude that diclofenac may affect the plants photosynthetic parameters and also might disturb the methylerythritol phosphate pathway (MEP) in plastids.
Drought and flooding are some of the most common stressful conditions for plants. Due to the recent climate changes, they can occur one after another. This study is focused on the effect of antagonistic abiotic stress such as drought and flooding on the different metabolites from Ocimum basilicum leaves. Six-week-old plants of Ocimum basilicum were exposed to drought or flooding stress for 15 days, followed by antagonist stress for 14 days. The assimilation rates decrease drastically for plants under consecutive stresses from 18.9 to 0.25 µmol m−2 s−1 starting at day 3 of treatment. The stomatal conductance to water vapor gs was also reduced from 86 to 29 mmol m−2 s−1. The emission of green leaf volatiles compounds increases from 0.14 to 2.48 nmol m−2 s−1, and the emission of monoterpenes increased from 2.00 to 7.37 nmol m−2 s−1. The photosynthetic pigment concentration (chlorophyll a and b, and β-carotene), the flavonoid content, and total phenolic content decrease for all stressed plants. The results obtained in this study could indicate that the water status (drought and/or flooding) directly impacts basil plants’ physiological parameters and secondary metabolites.
Nonsteroidal anti-inflammatory medications (NSAIDs) are commonly used painkillers, anti-inflammatory agents, and fever reducers. They arrive in the environment from municipal wastewater and/or agriculture waste, affecting growing plants. In our study, the impact of NSAIDs, namely, diclofenac, indomethacin, naproxen, and paracetamol, on four plant species from the Fabaceae family (Cicer arietinum, Pisum sativum, Lens culinaris, and Vicia faba) was tested. The assimilation rate and stomatal conductance decreased for all plants treated with NSAIDs. Chlorophyll and carotenoid contents in the leaves of plants under stress declined by more than 15% compared with the control plants, while the flavonoids and total phenols decreased to a lesser extent. In contrast, the plants treated with NSAIDs emit terpenes and green leaf were volatile, at a level of some nmol m−2 s−1, which could influence the atmospheric reaction and ozone formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.