There is now strong evidence that foraging niche specialisation plays a critical role in the very early stages of resource driven speciation. Here we test critical elements of models defining this process using a known polymorphic population of Arctic charr from subarctic Norway. We test the long-term stability of niche specialisation amongst foraging predators and discuss the possibility that contrasting foraging specialists are exposed to differing selection regimes. Inter-individual foraging niche stability was measured by combining two time-integrated ecological tracers of the foraging niche (each individual's d 13 C and d 15 N stable isotope (SI) signatures and their food borne parasite fauna) with a short-term measure of foraging niche use (stomach contents composition). Three dietary subgroups of predators were identified, including zooplankton, gammarid and benthivore specialists foragers. Zooplanktivorous specialists had muscle low in d 13 C, a high abundance of parasites transmitted from pelagic copepods, a smaller head, longer snout and a more slender body-form than gammaridivorous specialist individuals which had muscle more enriched in d 13 C and high abundance of parasites transmitted from benthic Gammarus. Benthivorous individuals were intermediate between the other two foraging groups according to muscle SI-signals (d 13 C) and loadings of parasites transmitted from Electronic supplementary material The online version of this article (both copepods and Gammarus. The close relationship between subgroups identified by stomach contents, time-integrated tracers of niche use (SI and parasites) and functional trophic morphology (niche adaptations) demonstrate a long-term temporally stable niche use of each individual predator. Differential habitat use and contrasting parasite communities and loadings, show differential exposure to different suites of selection pressures for different foraging specialists. Results also show that individual specialisation in trophic behaviour and thus exposure to different suites of selection pressures are stable over time, and thus provide a platform for disruptive selection to operate within this sympatric system.
The expression of two or more discrete phenotypes amongst individuals within a species (morphs) provides multiple modes upon which selection can act semi‐independently, and thus may be an important stage in speciation. In the present study, we compared two sympatric morph systems aiming to address hypotheses related to their evolutionary origin. Arctic charr in sympatry in Loch Tay, Scotland, exhibit one of two discrete, alternative body size phenotypes at maturity (large or small body size). Arctic charr in Loch Awe segregate into two temporally segregated spawning groups (breeding in either spring or autumn). Mitochondrial DNA restriction fragment length polymorphism analysis showed that the morph pairs in both lakes comprise separate gene pools, although segregation of the Loch Awe morphs is more subtle than that of Loch Tay. We conclude that the Loch Awe morphs diverged in situ (within the lake), whereas Loch Tay morphs most likely arose through multiple invasions by different ancestral groups that segregated before post‐glacial invasion (i.e. in allopatry). Both morph pairs showed clear trophic segregation between planktonic and benthic resources (measured by stable isotope analysis) but this was significantly less distinct in Loch Tay than in Loch Awe. By contrast, both inter‐morph morphological and life‐history differences were more subtle in Loch Awe than in Loch Tay. The strong ecological but relatively weak morphological and life‐history divergence of the in situ derived morphs compared to morphs with allopatric origins indicates a strong link between early ecological and subsequent genetic divergence of sympatric origin emerging species pairs. The emergence of parallel specialisms despite distinct genetic origins of these morph pairs suggests that the effect of available foraging opportunities may be at least as important as genetic origin in structuring sympatric divergence in post‐glacial fishes with high levels of phenotypic plasticity. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ••, ••–••.
The expression of alternative phenotypes within a single species is often considered to be the result of ontogenetic processes and specifically phenotypic plasticity responses to exposure to different environmental conditions. In fish, which have been widely used to test such questions, exposure to different diets is the most frequently described initiator of plastic responses. The effect of physical characteristics of the habitat on fish morphology has not been fully explored. In the present study, a clear effect of habitat complexity on fish shape was found. Threespine sticklebacks were exposed to two different habitat treatments, simple and complex, over a 17-week period. The exposure to the habitats resulted in the expression of very significant differences in body and head morphologies and spine position, showing that the physical environment can modulate the expression of traits through phenotypic plasticity during ontogeny.
Many animal species show individual foraging specialisms when potential prey requires prey-specific foraging strategies. Arctic charr are often found as benthic (macroinvertebrate) or pelagic (plankton) foraging specialists. Here, we tested specifically if given a choice of prey with different characteristics individuals would specialise in a single prey type and if individuals would chose prey based on their expressed trophic morphology, in a laboratory experiment and in a field observation. When offered a choice of benthic and pelagic prey most individuals (73%) showed that 100% fidelity to a single foraging source. Naïve individuals (not previously exposed to natural prey) with more robust head and mouth shape were more likely to forage on a benthic prey source (chironomids). In contrast, individuals with a more fusiform body, larger eye, but more slender head shape were more likely to specialise on pelagic prey (Artemia). Field observations of a natural population of Arctic charr from Loch Doine identified specialists foraging on either plankton or macrobenthos (on the basis of stomach contents) and some generalists. Morphological analysis showed that significant differences in shape reflecting recent foraging history. These results support the hypothesis that the availability of discrete, different prey types results in discrete foraging specialisms which in turn may result in the expression of discrete alternative phenotypes through subsequent plastic ontogenetic process. We conclude that this provides a partial explanation for why ecologically driven evolution processes are particularly prevalent in fishes from post-glacial lake systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.