AXB should be used whenever possible as the standard reference for IMSRT boost of NPC cases. The more accurate AXB indicating lower target coverage and lower minimum target dose compared to AAA should be noted.
In general, the verification measurements demonstrated that both algorithms produced acceptable accuracy when compared to the measured data. GafChromic(®) film results indicated that AXB produced slightly better accuracy compared to AAA for dose calculation adjacent to and within the heterogeneous media. Users should be aware of the differences in calculated target doses between options AXB_Dm and AXB_Dw, especially in bone, for IMRT and RA in NPC cases.
PurposeIntensity-modulated radiation therapy (IMRT) is the most common treatment technique for nasopharyngeal carcinoma (NPC). Physical quantities such as dose/dose-volume parameters are used conventionally for IMRT optimization. The use of biological related models has been proposed and can be a new trend. This work was to assess the performance of the biologically based IMRT optimization model installed in a popular commercial treatment planning system (Eclipse) as compared to its dose/dose volume optimization model when employed in the clinical environment for NPC cases.MethodsTen patients of early stage NPC and ten of advanced stage NPC were selected for this study. IMRT plans optimized using biological related approach (BBTP) were compared to their corresponding plans optimized using the dose/dose volume based approach (DVTP). Plan evaluation was performed using both biological indices and physical dose indices such as tumor control probability (TCP), normal tissue complication probability (NTCP), target coverage, conformity, dose homogeneity and doses to organs at risk. The comparison results of the more complex advanced stage cases were reported separately from those of the simpler early stage cases.ResultsThe target coverage and conformity were comparable between the two approaches, with BBTP plans producing more hot spots. For the primary targets, BBTP plans produced comparable TCP for the early stage cases and higher TCP for the advanced stage cases. BBTP plans reduced the volume of parotid glands receiving doses of above 40 Gy compared to DVTP plans. The NTCP of parotid glands produced by BBTP were 8.0±5.8 and 7.9±8.7 for early and advanced stage cases, respectively, while those of DVTP were 21.3±8.3 and 24.4±12.8, respectively. There were no significant differences in the NTCP values between the two approaches for the serial organs.ConclusionsOur results showed that the BBTP approach could be a potential alternative approach to the DVTP approach for NPC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.