Carbonate reservoirs represent a large portion of the world’s oil and gas reserves, exhibiting specific characteristics that pose complex challenges to the reservoirs’ characterization, production, and management. Therefore, the evaluation of the relationships between the key parameters, such as porosity, permeability, water saturation, and pore size distribution, is a complex task considering only well-log data, due to the geologic heterogeneity. Hence, the petrophysical parameters are the key to assess the original composition and postsedimentological aspects of the carbonate reservoirs. The concept of reservoir petrofacies was proposed as a tool for the characterization and prediction of the reservoir quality as it combines primary textural analysis with laboratory measurements of porosity, permeability, capillary pressure, photomicrograph descriptions, and other techniques, which contributes to understanding the postdiagenetic events. We have adopted a workflow to petrofacies classification of a carbonate reservoir from the Campos Basin in southeastern Brazil, using the following machine learning methods: decision tree, random forest, gradient boosting, K-nearest neighbors, and naïve Bayes. The data set comprised 1477 wireline data from two wells (A3 and A10) that had petrofacies classes already assigned based on core descriptions. It was divided into two subsets, one for training and one for testing the capability of the trained models to assign petrofacies. The supervised-learning models have used labeled training data to learn the relationships between the input measurements and the petrofacies to be assigned. Additionally, we have developed a comparison of the models’ performance using the testing set according to accuracy, precision, recall, and F1-score evaluation metrics. Our approach has proved to be a valuable ally in petrofacies classification, especially for analyzing a well-logging database with no prior petrophysical information.