Purpose of review: This review addresses diagnostic methods for crystalline arthritis including synovial fluid analysis, ultrasound and dual energy CT scan (DECT). Recent findings:There are new technologies on the horizon to improve the ease, sensitivity and specificity of synovial fluid analysis. Raman spectroscopy uses the spectral signature that results from a material's unique energy absorption and scatter for crystal identification. Lens-free microscopy directly images synovial fluid aspirate on to a complementary metal-oxide semiconductor (CMOS) chip, providing a high-resolution, wide field of view (~20 mm 2 ) image. Raman spectroscopy and lens-free microscopy may provide additional benefit over compensated polarized light microscopy (CPLM) synovial fluid analysis by quantifying crystal density in synovial fluid samples. Ultrasound and DECT have good sensitivity and specificity for the identification of monosodium urate (MSU) and calcium pyrophosphate (CPP) crystals. However, both have limitations in patients with recent onset gout and low urate burdens.Summary: New technologies promise improved methods for detection of MSU and CPP crystals. At this time, limitations of these technologies do not replace the need for synovial fluid aspiration for confirmation of crystal detection. None of these technologies address the often concomitant indication to rule out infectious arthritis.
Objective: To describe the characteristics of calcium pyrophosphate (CPP) crystal size and morphology under compensated polarized light microscopy (CPLM). Secondarily, to describe CPP crystals seen only with digital enhancement of CPLM images, confirmed with advanced imaging techniques. Methods: Clinical lab-identified CPP-positive synovial fluid samples were collected from 16 joint aspirates. Four raters used a standardized protocol to describe crystal shape, birefringence strength and color. A crystal expert confirmed CPLM-visualized crystal identification. For crystal measurement, a high-pass linear light filter was used to enhance resolution and line discrimination of digital images. This process identified additional enhanced crystals not seen by raters under CPLM. Single-shot computational polarized light microscopy (SCPLM) provided further confirmation of the enhanced crystals’ presence. Results: Of 932 suspected crystals identified by CPLM, 569 met our inclusion criteria, and 293 (51%) were confirmed as CPP crystals. Of 175 unique confirmed crystals, 118 (67%) were rods (median area 3.6 μm 2 [range, 1.0–22.9 μm 2 ]), and 57 (33%) were rhomboids (median area 4.8 μm 2 [range, 0.9–16.7 μm 2 ]). Crystals visualized only after digital image enhancement were smaller and less birefringent than CPLM-identified crystals. Conclusions: CPP crystals that are smaller and weakly birefringent are more difficult to identify. There is likely a population of smaller, less birefringent CPP crystals that routinely goes undetected by CPLM. Describing the characteristics of poorly visible crystals may be of use for future development of novel crystal identification methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.