The ability to measure total and phosphorylated tau levels in clinical samples is transforming the detection of Alzheimer’s disease (AD) and other neurodegenerative diseases. In particular, recent reports indicate that accurate detection of low levels of phosphorylated tau (p-tau) in plasma provides a reliable biomarker of AD long before sensing memory loss. Therefore, the diagnosis and monitoring of neurodegenerative diseases progression using blood samples is becoming a reality. These major advances were achieved by using antibodies specific to p-tau as well as sophisticated high sensitivity immunoassay platforms. This review focuses on these enabling advances in high-specificity antibody development, engineering, and novel signal detection methods. We will draw insights from structural studies on p-tau antibodies, engineering efforts to improve their binding properties, and efforts to validate their specificity. A comprehensive survey of high-sensitivity p-tau immunoassay platforms along with sensitivity limits will be provided. We conclude that although robust approaches for detecting certain p-tau species have been established, systematic efforts to validate antibodies for assay development is still needed for the recognition of biomarkers for AD and other neurodegenerative diseases.
The detection of phosphorylated tau (p-tau) levels in clinical samples is of extreme importance for the detection of Alzheimer′s Disease (AD) as well as other neurodegenerative diseases. Recent reports show that detecting low levels of p-tau in plasma can be used as a reliable biomarker for detecting AD prior to the onset of memory loss. The ability to detect such low levels of p-tau is dependent on antibodies specific to the post translationally modified protein. However, the need for reliable phospho-site specific antibodies persists due to a lack of approaches for identifying monoclonal antibodies and characterizing non-specific binding. Here, we report a novel approach using the principles of yeast biopanning to create a robust platform that uses synthetic peptides as target antigens. Using peptides as antigens enables screening antibodies against defined post-translational modification sites, particularly for targeting intrinsically disordered proteins such as the human tau protein. To readily assess yeast binding and distinguish non-specific binding, we developed bi-directional expression vectors that allow antibody fragment surface display and intracellular fluorescent protein expression. We show that our platform can specifically and robustly detect a specific site within the p-tau target peptide when compared against non-phosphorylated controls. By improving biopanning parameters, we enabled phospho-specific capture of yeast cells displaying single-chain variable region fragments (scFvs) against p-tau with a wide range of affinities (KD = 0.2 to 60 nM). These results demonstrate that yeast biopanning can robustly capture yeast cells based on phospho-site specific antibody binding, opening doors for facile identification of high-quality monoclonal antibodies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.