The core particle (CP) of the yeast proteasome is composed of four heptameric rings of subunits arranged in a hollow, barrel-like structure. We report that the CP is autoinhibited by the N-terminal tails of the outer (alpha) ring subunits. Crystallographic analysis showed that deletion of the tail of the alpha 3-subunit opens a channel into the proteolytically active interior chamber of the CP, thus derepressing peptide hydrolysis. In the latent state of the particle, the tails prevent substrate entry by imposing topological closure on the CP. Inhibition by the alpha-subunit tails is relieved upon binding of the regulatory particle to the CP to form the proteasome holoenzyme.
ESCRT-III (endosomal sorting complexes required for transport-III) subunits cycle between two states: soluble monomers and higher-order assemblies that bind and remodel membranes during endosomal vesicle formation, midbody abscission and enveloped virus budding. Here, we show that the N-terminal core domains of IST1 (increased sodium tolerance-1) and CHMP3 (charged multivesicularbody protein-3) form equivalent four-helix bundles, revealing that IST1 is a previously unrecognized ESCRT-III family member. IST1 and its ESCRT-III binding partner, CHMP1B, both form higher-order helical structures in vitro, and IST1-CHMP1 interactions are required for abscission. The IST1 and CHMP3 structures also reveal that equivalent downstream α5 helices can fold back against the core domains. Mutations within the CHMP3 core-α5 interface stimulate the protein’s in vitro assembly and HIV inhibition activities, indicating that dissociation of the autoinhibitory α5 helix from the core activates ESCRT-III proteins for assembly at membranes.
The newly described yeast endosomal sorting complexes required for transport (ESCRT) protein increased sodium tolerance-1 (Ist1p) binds the late-acting ESCRT proteins Did2p/charged MVB protein (CHMP) 1 and Vps4p and exhibits synthetic vacuolar protein sorting defects when combined with mutations in the Vta1p/LIP5-Vps60p/CHMP5 complex. Here, we report that human IST1 also functions in the ESCRT pathway and is required for efficient abscission during HeLa cell cytokinesis. IST1 binding interactions with VPS4, CHMP1, LIP5, and ESCRT-I were characterized, and the IST1-VPS4 interaction was investigated in detail. Mutational and NMR spectroscopic studies revealed that the IST1 terminus contains two distinct MIT interacting motifs (MIM1 and MIM2) that wrap around and bind in different groves of the MIT helical bundle. IST1, CHMP1, and VPS4 were recruited to the midbodies of dividing cells, and depleting either IST1 or CHMP1 proteins blocked VPS4 recruitment and abscission. In contrast, IST1 depletion did not inhibit human immunodeficiency virus-1 budding. Thus, IST1 and CHMP1 act together to recruit and modulate specific VPS4 activities required during the final stages of cell division.
During prolonged starvation, yeast cells enter a stationary phase (SP) during which the synthesis of many proteins is dramatically decreased. We show that a parallel decrease in proteasome-dependent proteolysis also occurs. The reduction in proteolysis is correlated with disassembly of 26S proteasome holoenzymes into their 20S core particle (CP) and 19S regulatory particle (RP) components. Proteasomes are reassembled, and proteolysis resumes prior to cell cycle reentry. Free 20S CPs are found in an autoinhibited state in which the N-terminal tails from neighboring alpha subunits are anchored by an intricate lattice of interactions blocking the channel that leads into the 20S CPs. By deleting channel gating residues of CP alpha subunits, we generated an "open channel" proteasome that exhibits faster rates of protein degradation both in vivo and in vitro, indicating that gating contributes to regulation of proteasome activity. This open channel mutant is delayed in outgrowth from SP and cannot survive following prolonged starvation. In summary, we have found that the ubiquitin-proteasome pathway can be subjected to global downregulation, that the proteasome is a target of this regulation, and that proteasome downregulation is linked to survival of SP cells. Maintaining high viability during SP is essential for evolutionary fitness, which may explain the extreme conservation of channel gating residues in eukaryotic proteasomes.
Respiratory syncytial virus (RSV) infects epithelial cells of the respiratory tract and is a major cause of bronchiolitis and pneumonia in children and the elderly. The virus assembles and buds through the plasma membrane, forming elongated membrane filaments, but details of how this happens remain obscure. Oligomerization of the matrix protein (M) is a key step in the process of assembly and infectious virus production. In addition, it was suggested to affect the conformation of the fusion protein, the major current target for RSV antivirals, in the mature virus. The structure and assembly of M are thus key parameters in the RSV antiviral development strategy. The structure of RSV M was previously published as a monomer. Other paramyxovirus M proteins have been shown to dimerize, and biochemical data suggest that RSV M also dimerizes. Here, using size exclusion chromatography-multiangle laser light scattering, we show that the protein is dimeric in solution. We also crystallized M in two crystal forms and show that it assembles into equivalent dimers in both lattices. Dimerization interface mutations destabilize the M dimer in vitro. To assess the biological relevance of dimerization, we used confocal imaging to show that dimerization interface mutants of M fail to assemble into viral filaments on the plasma membrane. Additionally, budding and release of virus-like particles are prevented in M mutants that fail to form filaments. Importantly, we show that M is biologically active as a dimer and that the switch from M dimers to higher-order oligomers triggers viral filament assembly and virus production. IMPORTANCEHuman respiratory syncytial virus (RSV) is the most frequent cause of infantile bronchiolitis and pneumonia. The enormous burden of RSV makes it a major unmet target for a vaccine and antiviral drug therapy. Oligomerization of the matrix protein is a key step in the process of assembly and production of infectious virus, but the molecular mechanism of RSV assembly is still poorly understood. Here we show that the RSV matrix protein forms dimers in solution and in crystals; the dimer is essential for formation of higher-order oligomers. Destabilizing the dimer interface resulted in the loss of RSV filament formation and a lack of budding of virus-like particles. Importantly, our findings can potentially lead to new structure-based RSV inhibitors targeting the assembly process.H uman respiratory syncytial virus (RSV), an enveloped, nonsegmented negative-strand RNA paramyxovirus, is the major worldwide cause of bronchiolitis and pneumonia in infants and of morbidity and mortality in the elderly. Despite the large global impact of RSV infection, no specific antivirals or licensed vaccine is yet available (1, 2). Designing new antivirals requires detailed molecular and structural understanding of key steps in RSV replication.RSV encodes 11 proteins, with the 3 glycoproteins, the fusion protein (F), glycoprotein (G), and small hydrophobic protein (SH), being present in the viral envelope. The virion ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.