Cross-reactive carbohydrate determinants of plants are essentially a mixture of N-glycans containing beta1,2-xylose and core alpha1,3-fucose, the latter also found in insect glycoproteins. To determine the relative contributions of these two sugar residues to antibody binding, we prepared an array of glycomodified forms of human apo-transferrin. Using core-alpha1, 3-fucosyltransferase (EC 2.4.1.214) and beta1,2-xylosyltransferase (EC 2.4.2.38) recombinantly expressed in Pichia pastoris and suitable glycosidases, glycoforms containing either only fucose (MMF), only xylose (MMX), both (MMXF), or neither (MM) linked to the common pentasaccharide core were generated. Additional glycoforms were obtained by enzymatic removal of the alpha1,3-linked mannosyl residue. These transferrin glycoforms served to define the binding specificity of antibodies in western blot, ELISA, and inhibition ELISA. Rabbit anti-horseradish peroxidase serum bound to both the fucosylated (MMF) and the xylosylated (MMX) glycoforms. Inhibition studies indicated two independent highly specific populations reacting with either of the two epitopes. In contrast, the monoclonal antibody YZ1/2.23 appears to recognize a larger structure including both the fucosyl and the xylosyl residue. The mannose-deficient glycoform was a poorer inhibitor for both antibodies. Terminal GlcNAc residues prevented antibody binding. Rabbit anti-bee venom serum reacted with fucosylated forms (MMF and MMXF) only. Experiments with sera from allergic patients suggest that glycomodified human transferrin, especially the MMXF glycoform, is a suitable reagent for the detection of antibodies against cross-reactive carbohydrate determinants. Within the panel studied, several sera contained high levels of fucose-reactive IgE but only a few sera showed any binding to MMX-transferrin.
Xylosylated and core alpha1,3-fucosylated N-glycans from plants are immunogenic, and they play a still obscure role in allergy and in the field of plant-made protein pharmaceuticals. We immunized mice to generate monoclonal antibodies (mAbs) binding plant N-glycans specifically via the epitope containing either the xylose or the core alpha1,3-fucose residue. Splenocytes expressing N-glycan-specific antibodies derived from C57BL/6 mice previously immunized with plant glycoproteins were preselected by cell sorting to generate hybridoma lines producing specific antibodies. However, we obtained only mAbs unable to distinguish fucosylated from xylosylated N-glycans and reactive even with the pentasaccharide core Man3GlcNAc2. In contrast, immunization of rabbits yielded polyclonal sera selectively reactive with either fucosylated or xylosylated N-glycans. Purification of these sera using glyco-modified neoglycoproteins coupled to a chromatography matrix provided polyclonal sera suitable for affinity determination. Surface plasmon resonance measurements using sensor chips with immobilized glyco-modified transferrins revealed dissociation constants of around 10(-9) M. This unexpectedly high affinity of IgG antibodies toward carbohydrate epitopes has repercussions on our conception of the binding strength and significance of antiglycan IgE antibodies in allergy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.