Dissipative particle dynamics (DPD) simulations are performed to study the phase transition of sodium dodecyl sulfate (SDS) in aqueous solution, which is an anionic surfactant commonly known as sodium dodecyl sulfate. In this work, the aim is to find a coarse-grained minimal model suitable to produce the full phase diagram of SDS. We examine the coarse-grained models of SDS, which have been used in earlier computational studies to produce the phases as well as for finding the critical micelle concentration (CMC) of SDS. We contrast the results based on these models with the experimental observations to assess their accuracy. Our research also takes into account the importance of sodium ions, which come from the partial dissociation of SDS, when dissolved in water. The effect of sodium ion has not been considered explicitly in the computational work done so far using dissipative particle dynamics. In light of the above explorations, we propose new models for SDS and demonstrate that they successfully produce a compendious SDS phase diagram, which can precisely overlay the experimental results.
Dissipative particle dynamics (DPD) simulations has been performed to study the phase transition of a mixture of cationic and anionic surfactants in an aqueous solution as a function of the total concentration in water and the relative ratio of surfactants. The impact of the relative difference between the tail lengths of the cationic and anionic surfactants on the phase diagram has been simulated by tuning the number of DPD beads in the simulation model. This research also discusses the impact of the frequently used values of the parameters associated with the harmonic bonds among the bonded DPD beads on the obtained self-assemblies. We find remarkable differences in the resultant self-assemblies based on different choices of harmonic bond parameters. The performed simulations show an enhanced spectrum of self-assemblies with augmented tail lengths and disparate harmonic bond parameters. The obtained self-assemblies are quite unique and can potentially be used in the future for various applications. We also compare the simulation results of the vesicle structures obtained by modeling the electrostatic interaction in the simulation among the charged beads by explicitly introducing charges with a long-range interaction with those obtained by tuning the implicit electrostatic interaction without the long-range interaction. The effects of the chain length of the model and the harmonic bond parameters on the internal density of DPD beads and stress profiles within the vesicles are examined closely. These results are a significant contribution to understanding the stability of the phases and tailoring of the desired vesicles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.