The Paleocene-Eocene Thermal Maximum (PETM) is recognized by a major negative carbon isotope (δ 13 C) excursion (CIE) signifying an injection of isotopically light carbon into exogenic reservoirs, the mass, source, and tempo of which continue to be debated. Evidence of a transient precursor carbon release(s) has been identified in a few localities, although it remains equivocal whether there is a global signal. Here, we present foraminiferal δ 13 C records from a marine continental margin section, which reveal a 1.0 to 1.5‰ negative pre-onset excursion (POE), and concomitant rise in sea surface temperature of at least 2°C and a decline in ocean pH. The recovery of both δ 13 C and pH before the CIE onset and apparent absence of a POE in deep-sea records suggests a rapid (< ocean mixing time scales) carbon release, followed by recovery driven by deep-sea mixing. Carbon released during the POE is therefore likely more similar to ongoing anthropogenic emissions in mass and rate than the main CIE.
Abstract. Cold-water corals (CWCs) constitute important deep-water ecosystems that are under increasing environmental pressure due to ocean acidification and global warming. The sensitivity of these deep-water ecosystems to environmental change is demonstrated by abundant paleorecords drilled through CWC mounds that reveal characteristic alterations between rapid formation and dormant or erosive phases. Previous studies have identified several central parameters for driving or inhibiting CWC growth such as food supply, oxygenation, and the carbon saturation state of bottom water, yet there are still large uncertainties about the relative importance of the different environmental parameters. To advance this debate we have performed a multiproxy study on a sediment core retrieved from the 25 m high Bowie Mound, located at 866 m water depth on the continental slope off southeastern Brazil, a structure built up mainly by the CWC Solenosmilia variabilis. Our results indicate a multifactorial control on CWC growth at Bowie Mound during the past ∼ 160 kyr, which reveals distinct formation pulses during northern high-latitude glacial cold events (Heinrich stadials, HSs) largely associated with anomalously strong monsoonal rainfall over the continent. The ensuing enhanced runoff elevated the terrigenous nutrient and organic-matter supply to the continental margin and likely boosted marine productivity. The dispersal of food particles towards the CWC colonies during HSs was facilitated by the highly dynamic hydraulic conditions along the continental slope that prevailed throughout glacial periods. These conditions caused the emplacement of a pronounced nepheloid layer above Bowie Mound, thereby aiding the concentration and along-slope dispersal of organic matter. Our study thus emphasizes the impact of continental climate variability on a highly vulnerable deep-marine ecosystem.
Abstract. Cold-water corals (CWC) constitute important deep-water ecosystems that are increasingly under environmental pressure due to ocean acidification and global warming. The sensitivity of these deep-water ecosystems to environmental change is demonstrated by abundant paleo-records drilled through CWC mounds that reveal a characteristic alteration between rapid formation and dormant or erosive phases. Previous studies have identified several parameters such as food supply, oxygenation, and carbon saturation state of bottom water as central for driving or inhibiting CWC growth, yet there is still a large uncertainty about the relative importance of the different environmental parameters. To advance this debate we have performed a multi-proxy study on a sediment core retrieved from the 25 m high Bowie Mound, located in 866 m water depth on the continental slope off south-eastern Brazil, a structure built up mainly by the CWC Solenosmilia variabilis. Our results indicate a multi-factorial control on CWC growth and mound formation at Bowie Mound during the past ~160 kyrs, which reveals distinct formation pulses during glacial high northern latitude cold events (Heinrich Stadials, HS) largely associated with anomalous continental wet periods. The ensuing enhanced run-off elevated the terrigenous nutrient and organic matter supply to the continental margin, and might have boosted marine productivity. The dispersal of food particles towards the CWC colonies during HS was facilitated by the highly dynamic hydraulic conditions along the continental slope that prevailed throughout glacial periods. These conditions caused the emplacement of a pronounced nepheloid layer above Bowie Mound aiding the concentration and along-slope dispersal of organic matter. Our study thus demonstrates a yet unrecognized impact of continental climate variability on a highly vulnerable deep-marine ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.