To improve both the homogeneity and the stability of ADCs, we have developed site-specific drug-conjugating reagents that covalently rebridge reduced disulfide bonds. The new reagents comprise a drug, a linker, and a bis-reactive conjugating moiety that is capable of undergoing reaction with both sulfur atoms derived from a reduced disulfide bond in antibodies and antibody fragments. A disulfide rebridging reagent comprising monomethyl auristatin E (MMAE) was prepared and conjugated to trastuzumab (TRA). A 78% conversion of antibody to ADC with a drug to antibody ratio (DAR) of 4 was achieved with no unconjugated antibody remaining. The MMAE rebridging reagent was also conjugated to the interchain disulfide of a Fab derived from proteolytic digestion of TRA, to give a homogeneous single drug conjugated product. The resulting conjugates retained antigen-binding, were stable in serum, and demonstrated potent and antigen-selective cell killing in in vitro and in vivo cancer models. Disulfide rebridging conjugation is a general approach to prepare stable ADCs, which does not require the antibody to be recombinantly re-engineered for site-specific conjugation.
The efficacy of protein-based medicines can be compromised by their rapid clearance from the blood circulatory system. Achieving optimal pharmacokinetics is a key requirement for the successful development of safe protein-based medicines. Protein PEGylation is a clinically proven strategy to increase the circulation half-life of protein-based medicines. One limitation of PEGylation is that there are few strategies that achieve site-specific conjugation of PEG to the protein. Here, we describe the covalent conjugation of PEG site-specifically to a polyhistidine tag (His-tag) on a protein. His-tag site-specific PEGylation was achieved with a domain antibody (dAb) that had a 6-histidine His-tag on the C-terminus (dAb-His(6)) and interferon α-2a (IFN) that had an 8-histidine His-tag on the N-terminus (His(8)-IFN). The site of PEGylation at the His-tag for both dAb-His(6)-PEG and PEG-His(8)-IFN was confirmed by digestion, chromatographic, and mass-spectral studies. A methionine was also inserted directly after the N-terminal His-tag in IFN to give His(8)Met-IFN. Cyanogen bromide digestion studies of PEG-His(8)Met-IFN were also consistent with PEGylation at the His-tag. By using increased stoichiometries of the PEGylation reagent, it was possible to conjugate two separate PEG molecules to the His-tag of both the dAb and IFN proteins. Stability studies followed by in vitro evaluation confirmed that these PEGylated proteins retained their biological activity. In vivo PK studies showed that all of the His-tag PEGylated samples displayed extended circulation half-lives. Together, our results indicate that site-specific, covalent PEG conjugation at a His-tag can be achieved and biological activity maintained with therapeutically relevant proteins.
Antibodies are currently the fastest growing class of therapeutic proteins. When antibody fragments are included, there are over thirty-five antibody-based medicines approved for human therapy. Many more antibody and antibody-like fragments are being evaluated clinically. Production of antibody fragments can be efficient and their compact size can allows for better tissue extravasation into solid tumors than full antibodies. Unfortunately, a key limitation of antibody fragments for systemic use is their short half-life in circulation. Prolonging their circulation half-life can be accomplished clinically by the covalent conjugation of the antibody fragment to the water-soluble polymer, poly(ethylene glycol) (PEG). Many polymers and strategies are also being pursued to increase antibody fragment half-life.
Many clinically used protein therapeutics are modified to increase their efficacy. Example modifications include the conjugation of cytotoxic drugs to monoclonal antibodies or poly(ethylene glycol) (PEG) to proteins and peptides. Monothiol-specific conjugation can be efficient and is often accomplished using maleimide-based reagents. However, maleimide derived conjugates are known to be susceptible to exchange reactions with endogenous proteins. To address this limitation in stability, we have developed PEG-mono-sulfone 3, which is a latently reactive, monothiol selective conjugation reagent. Comparative reactions with PEG-maleimide and other common thiol-selective PEGylation reagents including vinyl sulfone, acrylate, and halo-acetamides show that PEG-mono-sulfone 3 undergoes more efficient conjugation under mild reaction conditions. Due to the latent reactivity of PEG-mono-sulfone 3, its reactivity can be tailored and, once conjugated, the electron-withdrawing ketone is easily reduced under mild conditions to prevent undesirable deconjugation and exchange reactions from occurring. We describe a comparative stability study demonstrating a PEG-maleimide conjugate to be more labile to deconjugation than the corresponding conjugate obtained using PEG-mono-sulfone 3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.