Analysis of the protein profile of mitochondria and its age-dependent variation is a promising approach to unravel mechanisms involved in aging and age-related diseases. Our studies focus on the mammalian mitochondrial membrane proteome, especially of the inner mitochondrial membrane with the respiratory chain complexes and other proteins possibly involved in life-span control and aging. Variations of the mitochondrial proteome during aging, with the emphasis on the abundance, composition, structure, and activity of membrane proteins, are examined in various rat tissues by native polyacrylamide gel electrophoresis techniques in combination with MALDI-TOF mass spectrometry. In rat brain, age-modulated differences in the abundance of various mitochondrial and nonmitochondrial proteins, such as Na,K-ATPase, HSP60, mitochondrial aconitase-2, V-type ATPase, MF(o)F(1) ATP synthase, and the OXPHOS complexes I-IV are detected. During aging, a decrease in the amount of intact MF(o)F(1) ATP synthase occurs in the cortex. As analytical technique, native PAGE separates not only individual proteins but also multi-subunit (membrane) proteins, (membrane) protein supercomplexes as well as interacting proteins in their native state. It reveals the occurrence and architecture of supramolecular assemblies of proteins. The age-related alterations in the oligomerization of the MF(o)F(1) ATP synthase observed by us in rat cortex might be one clue for understanding the link between respiration and longevity. Also, the abundance of OXPHOS supercomplexes, that is, the natural assemblies of the respiratory complexes I, III, and IV into supramolecular stoichiometric entities, such as I(1)III(2)IV(0-4), can differ between young and aged cortex tissue. Age-related changes in the supramolecular architecture of OXPHOS complexes might explain alterations in ROS production during aging.
Purpose: RENEB, 'Realising the European Network of Biodosimetry and Physical Retrospective Dosimetry,' is a network for research and emergency response mutual assistance in biodosimetry within the EU. Within this extremely active network, a number of new dosimetry methods have recently been proposed or developed. There is a requirement to test and/or validate these candidate techniques and inter-comparison exercises are a well-established method for such validation. Materials and methods: The authors present details of inter-comparisons of four such new methods: dicentric chromosome analysis including telomere and centromere staining; the gene expression assay carried out in whole blood; Raman spectroscopy on blood lymphocytes, and detection of radiationinduced thermoluminescent signals in glass screens taken from mobile phones. Results: In general the results show good agreement between the laboratories and methods within the expected levels of uncertainty, and thus demonstrate that there is a lot of potential for each of the candidate techniques. INTERNATIONAL JOURNAL OF RADIATION BIOLOGY, 2017 VOL. 93, NO. 1, 99-109 http://dx.doi.org/10.1080/09553002.2016 Conclusions: Further work is required before the new methods can be included within the suite of reliable dosimetry methods for use by RENEB partners and others in routine and emergency response scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.