Sentiment analysis is a rapidly growing field of research due to the explosive growth in digital information. In the modern world of artificial intelligence, sentiment analysis is one of the essential tools to extract emotion information from massive data. Sentiment analysis is applied to a variety of user data from customer reviews to social network posts. To the best of our knowledge, there is less work on sentiment analysis based on the categorization of users by demographics. Demographics play an important role in deciding the marketing strategies for different products. In this study, we explore the impact of age and gender in sentiment analysis, as this can help e-commerce retailers to market their products based on specific demographics. The dataset is created by collecting reviews on books from Facebook users by asking them to answer a questionnaire containing questions about their preferences in books, along with their age groups and gender information. Next, the paper analyzes the segmented data for sentiments based on each age group and gender. Finally, sentiment analysis is done using different Machine Learning (ML) approaches including maximum entropy, support vector machine, convolutional neural network, and long short term memory to study the impact of age and gender on user reviews. Experiments have been conducted to identify new insights into the effect of age and gender for sentiment analysis.
We demonstrate the utility of elementary head-motion units termed kinemes for behavioral analytics to predict personality and interview traits. Transforming head-motion patterns into a sequence of kinemes facilitates discovery of latent temporal signatures characterizing the targeted traits, thereby enabling both efficient and explainable trait prediction. Utilizing Kinemes and Facial Action Coding System (FACS) features to predict (a) OCEAN personality traits on the First Impressions Candidate Screening videos, and (b) Interview traits on the MIT dataset, we note that: (1) A Long-Short Term Memory (LSTM) network trained with kineme sequences performs better than or similar to a Convolutional Neural Network (CNN) trained with facial images; (2) Accurate predictions and explanations are achieved on combining FACS action units (AUs) with kinemes, and (3) Prediction performance is affected by the time-length over which head and facial movements are observed. CCS CONCEPTS• Human-centered computing → Human computer interaction (HCI); • Computing methodologies → Computer vision representations.
We explore the efficacy of multimodal behavioral cues for explainable prediction of personality and interview-specific traits. We utilize elementary head-motion units named kinemes, atomic facial movements termed action units and speech features to estimate these human-centered traits. Empirical results confirm that kinemes and action units enable discovery of multiple trait-specific behaviors while also enabling explainability in support of the predictions. For fusing cues, we explore decision and feature-level fusion, and an additive attention-based fusion strategy which quantifies the relative importance of the three modalities for trait prediction. Examining various long-short term memory (LSTM) architectures for classification and regression on the MIT Interview and First Impressions Candidate Screening (FICS) datasets, we note that: (1) Multimodal approaches outperform unimodal counterparts; (2) Efficient trait predictions and plausible explanations are achieved with both unimodal and multimodal approaches, and (3) Following the thin-slice approach, effective trait prediction is achieved even from two-second behavioral snippets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.