Analysis of Listeria monocytogenes ptsH, hprK, and ccpA mutants defective in carbon catabolite repression (CCR) control revealed significant alterations in the expression of PrfA-dependent genes. The hprK mutant showed high up-regulation of PrfA-dependent virulence genes upon growth in glucose-containing medium whereas expression of these genes was even slightly down-regulated in the ccpA mutant compared to the wild-type strain. The ptsH mutant could only grow in a rich culture medium, and here the PrfA-dependent genes were up-regulated as in the hprK mutant. As expected, HPr-Ser-P was not produced in the hprK and ptsH mutants and synthesized at a similar level in the ccpA mutant as in the wild-type strain. However, no direct correlation was found between the level of HPr-Ser-P or HPr-His-P and PrfA activity when L. monocytogenes was grown in minimal medium with different phosphotransferase system (PTS) carbohydrates. Comparison of the transcript profiles of the hprK and ccpA mutants with that of the wild-type strain indicates that the up-regulation of the PrfA-dependent virulence genes in the hprK mutant correlates with the down-regulation of genes known to be controlled by the efficiency of PTS-mediated glucose transport. Furthermore, growth in the presence of the non-PTS substrate glycerol results in high PrfA activity. These data suggest that it is not the component(s) of the CCR or the common PTS pathway but, rather, the component(s) of subsequent steps that seem to be involved in the modulation of PrfA activity.Listeria monocytogenes, a gram-positive, facultative intracellular human pathogen, escapes from the primary phagosome, replicates efficiently in the host cell's cytosol, and spreads from cell to cell. These processes, which are of major importance for pathogenesis of an L. monocytogenes infection, require several, well-characterized virulence factors (for recent reviews, see references 17, 32 and 63), like internalins (InlA, InlB, and
Most facultative intracellular bacteria replicate in specialized phagosomes after being taken up by mammalian cells. Relatively few intracellular bacteria escape the phagosomal compartment with the help of cytolytic (pore-forming) proteins and replicate in the host cell cytosol. Without such toxins, intracellular bacteria cannot reach this cellular compartment. To circumvent the requirement of an ''escape'' step, we developed a procedure allowing the efficient direct injection of bacteria into the cytosol of mammalian cells. With this technique, we show that most bacteria, including extracellular bacteria and intracellular pathogens that normally reside in a vacuole, are unable to replicate in the cytosol of the mammalian cells. In contrast, microorganisms that replicate in the cytosol, such as Listeria monocytogenes, Shigella flexneri, and, to some extent, enteroinvasive Escherichia coli, are able to multiply in this cellular compartment after microinjection. Further L. monocytogenes with deletion in its PrfAregulated hpt gene was found to be impaired in replication when injected into the cytosol. Complementation of the hpt mutation with a plasmid carrying the wild-type hpt gene restored the replication ability in the cytosol. These data indicate that cytosolic intracellular pathogens have evolved specific mechanisms to grow in this compartment of mammalian cells. M any pathogenic bacteria are able to trigger their uptake by mammalian cells, which is followed by efficient multiplication of the internalized bacteria inside of the host cells. Internalization of these bacteria involves normal phagocytosis when the host cells are professional phagocytes, e.g., macrophages, or triggered phagocytosis in the case of nonprofessional phagocytic host cells, such as epithelial cells, hepatocytes, fibroblasts, and endothelial cells (1, 2). After internalization, most intracellular bacteria reside and replicate inside membrane-bound vacuoles that are specifically modified by the different bacteria (3, 4). Salmonella enterica, Legionella pneumophila, members of the Mycobacterium tuberculosis complex, Mycobacterium leprae, Brucella spp., Chlamydia, Rhodococcus equi, and several others belong to this group of intracellular bacteria. A smaller group of intracellular bacteria, including Shigella spp., the closely related enteroinvasive Escherichia coli (EIEC), Listeria monocytogenes, Listeria ivanovii, and Ricksettia spp., can escape from the primary phagosome into the host cell cytosol where the bacteria proficiently replicate. These latter bacteria synthesize specific proteins that disrupt the phagosomal membrane, thus allowing bacterial entry into the cytosol. In L. monocytogenes, the required proteins are best characterized and comprise the pore-forming lysteriolysin (LLO) and two phospholipases C, PlcA and PlcB (5, 6).It has been reported that the introduction and expression of the listerial hly gene (encoding LLO) in Bacillus subtilis leads to the release of these avirulent bacteria into the cytosol of mammalian cells wher...
InlA-but not InlB-mediated internalization of Listeria monocytogenes by non-phagocytic mammalian cells needs the support of other internalinsneeds the supportive functions of the other internalins to trigger phagocytosis. None of these internalins seems to be required for cell-to-cell spread by L. monocytogenes, as shown by microinjection of Caco-2 cells with appropriate inl mutants.
BackgroundTinnitus, the perception of sound in absence of an external acoustic source, impairs the quality of life in 2% of the population. Since in most cases causal treatment is not possible, the majority of therapeutic attempts aim at developing and strengthening individual coping and habituation strategies. Therapeutic interventions that incorporate training in mindfulness meditation have become increasingly popular in the treatment of stress-related disorders. Here we conducted a randomized, controlled clinical study to investigate the efficacy of a specific mindfulness- and body-psychotherapy based program in patients suffering from chronic tinnitus.MethodsThirty-six patients were enrolled in this pilot study. The treatment was specifically developed for tinnitus patients and is based on mindfulness and body psychotherapy. Treatment was performed as group therapy at two training weekends that were separated by an interval of 7 weeks (eleven hours/weekend) and in four further two-hour sessions (week 2, 9, 18 and 22). Patients were randomized to receive treatment either immediately or after waiting time, which served as a control condition. The primary study outcome was the change in tinnitus complaints as measured by the German Version of the Tinnitus Questionnaire (TQ).ResultsANOVA testing for the primary outcome showed a significant interaction effect time by group (F = 7.4; df = 1,33; p = 0.010). Post hoc t-tests indicated an amelioration of TQ scores from baseline to week 9 in both groups (intervention group: t = 6.2; df = 17; p < 0.001; control group: t = 2.5; df = 16; p = 0.023), but the intervention group improved more than the control group. Groups differed at week 7 and 9, but not at week 24 as far as the TQ score was concerned.ConclusionsOur results suggest that this mindfulness- and body-psychotherapy-based approach is feasible in the treatment of tinnitus and merits further evaluation in clinical studies with larger sample sizes.The study is registered with clinicaltrials.gov (NCT01540357).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.