Oxidative stress is characterized by an imbalance between prooxidant and antioxidant species, leading to macromolecular damage and disruption of redox signaling and cellular control. It is a hallmark of various diseases including metabolic syndrome, chronic fatigue syndrome, neurodegenerative, cardiovascular, inflammatory, and age-related diseases. Several mitochondrial defects have been considered to contribute to the development of oxidative stress and known as the major mediators of the aging process and subsequent age-associated diseases. Thus, mitochondrial-targeted antioxidants should prevent or slow down these processes and prolong longevity. This is the reason why antioxidant treatments are extensively studied and newer and newer compounds with such an effect appear. Astaxanthin, a xanthophyll carotenoid, is the most abundant carotenoid in marine organisms and is one of the most powerful natural compounds with remarkable antioxidant activity. Here, we summarize its antioxidant targets, effects, and benefits in diseases and with aging.
Protein kinase C (PKC) isoforms play pivotal roles in the regulation of differentiation of normal human epidermal keratinocytes (NHEK). In this study, we investigated the participation of the PKC system in the proliferation and high cell density-induced differentiation of the human immortalized keratinocyte line HaCaT. HaCaT keratinocytes possessed a characteristic PKC isoform pattern (PKC alpha, beta, gamma, delta, epsilon, eta, theta, zeta), which altered during proliferation and differentiation. The GF109203X compound, a selective PKC inhibitor, suppressed the expressions of the lat (granular cell) differentiation markers involucrin (INV) and filaggrin (FIL), and the terminal marker keratinocyte-specific transglutaminase-1 (TG), but did not affect the level of the early (spinous cell) marker keratin 10 (K10) and cellular proliferation. Phorbol 12-myristate 13-acetate (PMA), an activator of PKC, inhibited proliferation, elevated intracellular calcium concentration, decreased the expression of K10, and increased the expressions of INV, FIL, and TG. These data indicate that the endogenous activation of PKC regulates the expressions of the late differentiation markers, and that the exogenous activation of PKC by PMA results in the induction of terminal differentiation. Because the cellular effects of PMA were accompanied by differential down-regulations of the sensitive PKC isoforms in proliferating and differentiating cultures, our findings argue for the differential roles of the existing PKC isoforms in the regulation of cellular proliferation and high cell density-induced differentiation of HaCaT cells.
This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
The presence of TASK-3 channels has been described in a number of healthy and malignantly transformed cells, showing mainly intracellular distribution with relatively insignificant labelling of the cell surface membrane. In this work, immunochemical and molecular biology methods were utilised to establish the intracellular organelle whose TASK-3 expression accounts for this strong intracellular labelling using cultured melanoma and HaCaT cells. Before the immunocytochemical experiments, the presence of TASK-3 mRNA was also confirmed in melanoma cells. Comparison of the results of the TASK-3- and mitochondrion-specific labelling indicated that the TASK-3 channel subunits were strongly expressed by mitochondria in both investigated cell types. Moreover, prominent TASK-3 expression of keratinocytes could also be demonstrated in histological sections excised from the human skin. These results indicate that TASK-3 channels are present in the mitochondria in both malignantly transformed and healthy cells, suggesting that they might have roles in ensuring mitochondrial functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.