Single document summarization generates summary by extracting the representative sentences from the document. In this paper, we presented a novel technique for summarization of domain-specific text from a single web document that uses statistical and linguistic analysis on the text in a reference corpus and the web document. The proposed summarizer uses the combinational function of Sentence Weight ( ) and Subject Weight ( ) to determine the rank of a sentence, where is the function of number of terms ( ) and number of words ( ) in a sentence, and term frequency ( ) in the corpus and is the function of and in a subject, and in the corpus. 30 percent of the ranked sentences are considered to be the summary of the web document. We generated three web document summaries using our technique and compared each of them with the summaries developed manually from 16 different human subjects. Results showed that 68 percent of the summaries produced by our approach satisfy the manual summaries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.