Intracortical microelectrodes have shown great success in enabling locked-in patients to interact with computers, robotic limbs, and their own electrically driven limbs. The recent advances have inspired world-wide enthusiasm resulting in billions of dollars invested in federal and industrial sponsorships to understanding the brain for rehabilitative applications. Additionally, private philanthropists have also demonstrated excitement in the field by investing in the use of brain interfacing technologies as a means to human augmentation. While the promise of incredible technologies is real, caution must be taken as implications regarding optimal performance and unforeseen side effects following device implantation into the brain are not fully characterized. The current study is aimed to quantify any motor deficit caused by microelectrode implantation in the motor cortex of healthy rats compared to non-implanted controls. Following electrode insertion, rats were tested on an open-field grid test to study gross motor function and a ladder test to study fine motor function. It was discovered that rats with chronically indwelling intracortical microelectrodes exhibited up to an incredible 527% increase in time to complete the fine motor task. This initial study defines the need for further and more robust behavioral testing of potential unintentional harm caused by microelectrode implantation.
Medical devices implanted in the brain hold tremendous potential. As part of a Brain Machine Interface (BMI) system, intracortical microelectrodes demonstrate the ability to record action potentials from individual or small groups of neurons. Such recorded signals have successfully been used to allow patients to interface with or control computers, robotic limbs, and their own limbs. However, previous animal studies have shown that a microelectrode implantation in the brain not only damages the surrounding tissue but can also result in functional deficits. Here, we discuss a series of behavioral tests to quantify potential motor impairments following the implantation of intracortical microelectrodes into the motor cortex of a rat. The methods for open field grid, ladder crossing, and grip strength testing provide valuable information regarding the potential complications resulting from a microelectrode implantation. The results of the behavioral testing are correlated with endpoint histology, providing additional information on the pathological outcomes and impacts of this procedure on the adjacent tissue.
We have recently demonstrated that implanting intracortical microelectrodes in the motor corteces of rats results in immediate and lasting motor deficits. Motor impairments were manually quantified through an open field grid test to measure the gross motor function and through a ladder test to measure the fine motor function. Here, we discuss a technique for the automated quantification of the video-recorded tests using our custom Capadona Behavioral Video Analysis System: Grid and Ladder Test, or BVAS. Leveraging simple and readily available coding software (see the Table of Materials), this program allows for the tracking of a single animal on both the open field grid and the ladder tests. In open field grid tracking, the code thresholds the video for intensity, tracks the position of the rat over the 3 min duration of the grid test, and analyzes the path. It then computes and returns measurements for the total distance traveled, the maximum velocity achieved, the number of left- and right-handed turns, and the total number of grid lines crossed by the rat. In ladder tracking, the code again thresholds the video for intensity, tracks the movement of the rat across the ladder, and returns calculated measurements including the time it took the rat to cross the ladder, the number of paw slips occurring below the plane of the ladder rungs, and the incidence of failures due to stagnation or reversals. We envision that the BVAS developed here can be employed for the analysis of motor function in a variety of applications, including many injury or disease models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.