In this contribution, the advantages and limitations of two computational techniques that can be used for the investigation of nanoparticles activity and toxicity: classic nano-QSAR (Quantitative Structure–Activity Relationships employed for nanomaterials) and 3D nano-QSAR (three-dimensional Quantitative Structure–Activity Relationships, such us Comparative Molecular Field Analysis, CoMFA/Comparative Molecular Similarity Indices Analysis, CoMSIA analysis employed for nanomaterials) have been briefly summarized. Both approaches were compared according to the selected criteria, including: efficiency, type of experimental data, class of nanomaterials, time required for calculations and computational cost, difficulties in the interpretation. Taking into account the advantages and limitations of each method, we provide the recommendations for nano-QSAR modellers and QSAR model users to be able to determine a proper and efficient methodology to investigate biological activity of nanoparticles in order to describe the underlying interactions in the most reliable and useful manner.Electronic supplementary materialThe online version of this article (doi:10.1007/s11051-016-3564-1) contains supplementary material, which is available to authorized users.
BackgroundIonic liquids (ILs) found a variety of applications in today’s chemistry. Since their properties depend on the ions constituting particular ionic liquid, it is possible to synthetize IL with desired specification, dependently on its further function. However, this task is not trivial, since knowledge regarding the influence of particular ion on the property of concern is crucial. Therefore, there is a strong need for new, fast and inexpensive methods supporting the process of ionic liquids’ design, making it possible to predefine IL’s properties even before the synthesis.ResultsWe have developed a simple tool (called Ionic Liquid PhysicoChemical predictor: ILPC) that allows for the simultaneous qualitative prediction of four physicochemical properties of ionic liquids: viscosity, n-octanol–water partition coefficient, solubility and enthalpy of fusion. By the means of Principal Component Analysis, we studied 172 ILs and defined distribution trends of those four properties, dependently on the ILs structures. We proved that the qualitative prediction of mentioned properties could be performed on the basis of most simple information we can deliver about ILs, which are their molecular formulas.ConclusionsCreated tool presented in this paper allows fast, pre-synthesis screening of ILs, with the omission of any experimental steps. It can be helpful in the process of designing ILs with preferred properties. We proved that the information encrypted in molecular formula of ionic liquid could be a valuable source of knowledge regarding the IL’s viscosity, n-octanol–water partition coefficient, solubility and enthalpy of fusion. Moreover, we proved that the influence of both ions, constituting the IL, on each of those four properties indicates same, additive trend.Graphical AbstractSchematic representation of ILPC performance - the exact position of the ionic liquid on the linear map is determined by its chemical structureElectronic supplementary materialThe online version of this article (doi:10.1186/s13321-016-0152-4) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.