Transcription analyses reported in these studies reveal that convergent genes in S. pombe generate overlapping transcripts in the G1 phase of the cell cycle. We show that this double-strand (ds) RNA induces localized RNAi (Dicer and RITS) dependent transient heterochromatin structures including histone H3 lysine 9 trimethylation marks and Swi6 association. Consequently cohesin is recruited to these chromosomal positions through interaction with Swi6. In G2, localized cohesin is further concentrated into the intergenic regions of the convergent genes tested. This results in a block to further dsRNA formation by promoting gene-proximal transcription termination between the convergent genes. Cohesin release at mitosis leads to a new G1 phase with repeated dsRNA formation, transient heterochromatin, and cohesin recruitment. Our results uncover a hitherto unanticipated role for cohesin and further suggest a widespread role for the selective formation of dsRNA, heterochromatin, and subsequent cohesin recruitment in regulated transcriptional termination.
Dicer is a central enzymatic player in RNA interference (RNAi) pathways that acts to regulate gene expression in nearly all eukaryotes. Although the cytoplasmic function of Dicer is well-documented in mammals, its nuclear function remains obscure. Here we show that Dicer is present in both the nucleus and cytoplasm, but that its nuclear levels are tightly regulated. In its nuclear manifestation, Dicer interacts with RNA polymerase II (Pol II) at actively-transcribed gene loci. Loss of Dicer causes the appearance of endogenous dsRNA, leading to induction of the interferon response pathway and consequent cell death. Our results suggest that Pol II-associated Dicer restricts endogenous dsRNA formation from overlapping non-coding RNA transcription units. Failure to do so has catastrophic effects on cell function.
DNA is constantly exposed to endogenous and exogenous damage. Various types of DNA repair counteract highly toxic DNA double-strand breaks (DSBs) to maintain genome stability. Recent findings suggest that the human DNA damage response (DDR) utilizes small RNA species, which are produced as long non-coding (nc)RNA precursors and promote recognition of DSBs. However, regulatory principles that control production of such transcripts remain largely elusive. Here we show that the Abelson tyrosine kinase c-Abl/ABL1 causes formation of RNA polymerase II (RNAPII) foci, predominantly phosphorylated at carboxy-terminal domain (CTD) residue Tyr1, at DSBs. CTD Tyr1-phosphorylated RNAPII (CTD Y1P) synthetizes strand-specific, damage-responsive transcripts (DARTs), which trigger formation of double-stranded (ds)RNA intermediates via DNA–RNA hybrid intermediates to promote recruitment of p53-binding protein 1 (53BP1) and Mediator of DNA damage checkpoint 1 (MDC1) to endogenous DSBs. Interference with transcription, c-Abl activity, DNA–RNA hybrid formation or dsRNA processing impairs CTD Y1P foci formation, attenuates DART synthesis and delays recruitment of DDR factors and DSB signalling. Collectively, our data provide novel insight in RNA-dependent DDR by coupling DSB-induced c-Abl activity on RNAPII to generate DARTs for consequent DSB recognition.
AtCyp59 and its orthologs from different organisms belong to a family of modular proteins consisting of a peptidyl-prolyl cistrans isomerase (PPIase) domain, followed by an RNA recognition motif (RRM), and a C-terminal domain enriched in charged amino acids. AtCyp59 was identified in a yeast two-hybrid screen as an interacting partner of the Arabidopsis SR protein SCL33/ SR33. The interaction with SCL33/SR33 and with a majority of Arabidopsis SR proteins was confirmed by in vitro pull-down assays. Consistent with these interactions, AtCyp59 localizes to the cell nucleus, but it does not significantly colocalize with SR proteins in nuclear speckles. Rather, it shows a punctuate localization pattern resembling transcription sites. Indeed, by using yeast two-hybrid, in vitro pull-down, and immunoprecipitation assays, we found that AtCyp59 interacts with the C-terminal domain (CTD) of the largest subunit of RNA polymerase II. Ectopic expression of the tagged protein in Arabidopsis cell suspension resulted in highly reduced growth that is most probably due to reduced phosphorylation of the CTD. Together our data suggest a possible function of AtCyp59 in activities connecting transcription and pre-mRNA processing. We discuss our data in the context of a dynamic interplay between transcription and pre-mRNA processing.
Recent work implicated human Dicer in the DNA damage response. Burger et al. show that DNA damage induces phosphorylation of Dicer and promotes DNA repair in the nucleus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.