Gene mutations that interfere with macronuclear development in Paramecium were obtained by selecting lines that failed to produce normal macronuclear anlagen following the second autogamy after mutagenesis. The mutants fell into several complementation groups. There was one case of apparent intragenic noncomplementation among the eight mutants examined. In the stronger mutants, macronuclear anlagen were not formed, and all four mitotic products of the postzygotic divisions of the synkaryon remained as micronuclei. Under semirestrictive conditions, cells often contained a single anlage, suggesting that determination of anlagen was a discrete event for each nucleus. The missing anlagen trait was recessive and associated with a strong maternal effect. The phenocritical period of one of the stronger alleles, aaP, began at the second postzygotic division and ended with the first morphological differentiation of macronuclear anlagen. Nuclear migration in this mutant was abnormal. Under restrictive conditions, the posterior products of the second postzygotic division reached a posteriormost position, which was 8% of cell length more anterior than that of the most posterior nuclei in wild-type cells. Under permissive conditions, the pattern of migration was intermediate between that of wild-type cells and mutants under fully restrictive conditions. The patterns of nuclear migration were consistent with the nuclear growth kinetics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.