Trifluoromethylthiolation of aromatic compounds with different electrophilic reagents of the type ArNHSCF3 was studied in the presence of triflic acid as an activator. The effect of the reagent structure on the reactivity was studied with three different reagents: PhNHSCF3 (H/SCF3, 1a), 4‐ClC6H4NHSCF3 (Cl/SCF3, 1b) and C6F5NHSCF3 (F5/SCF3, 1c). p‐Chloro substituted reagent 1b was more stable than the unsubstituted 1a and was the most effective because it could not react by trifluoromethylthiolation of itself. This reaction was the most important side reaction of 1a. The pentafluoro derivative 1c was less reactive. Solvent played an important role in the transformation and, depending on the substrate, dichloromethane, hexane or trifluoroacetic acid gave the best yield of various trifluoromethylthiolated aromatic molecules (63–98 %).
The current COVID-19 outbreak has highlighted the need for the development of new vaccines and drugs to combat Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2). Recently, various drugs have been proposed as potentially effective against COVID-19, such as remdesivir, infliximab and imatinib. Natural plants have been used as an alternative source of drugs for thousands of years, and some of them are effective for the treatment of various viral diseases. Emodin (1,3,8-trihydroxy-6-methylanthracene-9,10-dione) is a biologically active anthraquinone with antiviral activity that is found in various plants. We studied the selectivity of electrophilic aromatic substitution reactions on an emodin core (halogenation, nitration and sulfonation), which resulted in a library of emodin derivatives. The main aim of this work was to carry out an initial evaluation of the potential to improve the activity of emodin against human coronavirus NL63 (HCoV-NL63) and also to generate a set of initial SAR guidelines. We have prepared emodin derivatives which displayed significant anti-HCoV-NL63 activity. We observed that halogenation of emodin can improve its antiviral activity. The most active compound in this study was the iodinated emodin analogue E_3I, whose anti-HCoV-NL63 activity was comparable to that of remdesivir. Evaluation of the emodin analogues also revealed some unwanted toxicity to Vero cells. Since new synthetic routes are now available that allow modification of the emodin structure, it is reasonable to expect that analogues with significantly improved anti-HCoV-NL63 activity and lowered toxicity may thus be generated.
We have developed a green, cheap, mild and environmentally friendly method for the selective cleavage of carbon–carbon double bonds with 30% aqueous solution of hydrogen peroxide as oxidant and vanadium(V)...
Allelopathic plants release secondary compounds into the soil that then suppress the growth of nearby plants. Allelopathy has been shown for the invasive Japanese knotweed (Fallopia japonica) and Bohemian knotweed (F. × bohemica). The aggressive and dominant invaders represent a serious threat to the local plant communities outside their native range. Here, we analysed the phenols in the knotweed rhizomes using nuclear magnetic resonance. We also evaluated the allelopathic potential of methanol extracts of F. japonica and F. × bohemica rhizomes and compared these with the effects of the individual knotweed phenols resveratrol, epicatechin and emodin, and their mixture. Rhizomes of both knotweeds contained similar amounts of epicatechin and emodin, with 24% higher resveratrol in F. × bohemica. Only the F. × bohemica methanol extract inhibited radish (Raphanus sativus) seed germination. After 3 days of treatments with 10% (w/v) extracts of both knotweeds, radish seedlings showed up to 70% shorter roots. In contrast, root growth of seedlings treated with the individual phenols resveratrol, epicatechin and emodin, and their mixture, was inhibited by up to 30%, similar to the 1% knotweed extracts. Biochemical parameters of oxidative stress also increased in the roots of treated seedlings, with high levels of malondialdehyde in particular indicating lipid peroxidation. Total antioxidative capacity was also increased in seedlings exposed to 0.6 mg/mL resveratrol and emodin. This study shows higher allelopathic potential of the knotweed methanol extracts compared to the individual phenols and their mixture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.