We report a fast mechanochemical method for making gram amounts of monodisperse and ultra-small gold nanoparticles in the size range of ∼1-4 nm, without external reducing agents or bulk solvents.
A versatile, low-energy and solvent-free method to access nanoparticles (NPs) of four different transition metals, based on a bottom-up mechanochemical procedure involving milling of inorganic precursors, is presented. Lignin, a biomass waste, was used effectively as a reducing agent, for the first time in a mechanochemical context, to access MNPs where M = Au, Pd, Ru, Re. A series of metal precursors was used for this reaction and their nature was shown to be integral in determining whether NPs became incorporated within the organic lignin matrix, M@lignin, or not. Specifically, organometallic precursors resulted in extensive encapsulation of the NPs, as well as improved control over their size and shape, while ionic precursors afforded matrix-free NPs. The resulting NP-containing composites were characterized through Fourier-transform infrared attenuated total reflectance (FTIR-ATR) spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (PXRD). This mechanochemical grinding method for accessing M@lignin (M = Au, Pd, Ru and Re) is significantly more sustainable than the traditional solvent batch syntheses of metal NPs because it relies on the use of a biomass-based polymer, it is highly atom economical, it eliminates the need for solvents and it reduces drastically the energy input.
Polyacrylamide embedded silver nanoparticles were synthesized from silver salts in a solvent-free fashion by ball milling mechanochemistry, with lignin as a biodegradable reducer, and used as highly efficient antibacterial plugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.