The article discusses analytical problems related to the determination of coenzyme Q10 in biological samples. The assaying of coenzyme Q10 in complex samples, such as plasma, tissues, or food items requires meticulous sample preparation prior to final quantification. The process typically consists of the following steps: deproteinization, extraction, and ultimately reduction of extract volumes. At times drying under a gentle stream of neutral gas is applied. In the case of solid samples, a careful homogenization is also required. Each step of the sample preparation process can be a source of analytical errors that may lead to inaccurate results. The main aim of this work is to point to sources of analytical errors in the preparation process and their relation to physicochemical properties of coenzyme Q10. The article also discusses ways of avoiding and reducing the errors.
The present study offers results of analysis concerning the course of reaction between reduced α-lipoic acid (LA) and 2-chloro-1-methylquinolinium tetrafluoroborate (CMQT). In water environments, the reaction between CMQT and hydrophilic thiols proceeds very rapidly and the resultant products are stable. For the described analysis, optimum reaction conditions, such as concentration of the reducing agent, environment pH, and concentration of the reagent were carefully selected. The spectrophotometric assay was carried out measuring absorbance at λ = 348 nm (i.e., the spectral band of the obtained reaction product). Furthermore, the calibration curve of lipoic acid was registered. It was concluded that the Lambert-Beer law was observed within the range 1–10 μmol L−1. Later, the reaction between LA and CMQT was used as precolumn derivatization in a chromatographic determination of the lipoic acid in the range 2.5–50 μmol L−1. Practical applicability of the designed methods was evaluated by determining lipoic acid in Revitanerv pharmaceutical preparation which contains 300 mg LA in a single capsule. The error of the determination did not exceed 0.5% in relation to the declared value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.