Deep learning techniques are playing an important role in the classification and prediction of diseases.Undoubtedly deep learning has a promising future in the health sector, especially in medical imaging.The popularity of deep learning approaches is because of their ability to handle a large amount of data related to the patients with accuracy, reliability in a short span of time. However, the practitioners may take time in analyzing and generating reports. In this paper, we have proposed a Deep Neural Network-based classification model for Parkinson's disease. Our proposed method is one such good example giving faster and more accurate results for the classification of Parkinson's disease patients with excellent accuracy of 94.87%. Based on the attributes of the dataset of the patient, the model can be used for the identification of Parkinsonism's. We have also compared the results with other existing
Deep learning techniques are playing an important role in the classification and prediction of diseases. Undoubtedly deep learning has a promising future in the health sector, especially in medical imaging. The popularity of deep learning approaches is because of their ability to handle a large amount of data related to the patients with accuracy, reliability in a short span of time. However, the practitioners may take time in analyzing and generating reports. In this paper, we have proposed a Deep Neural Network-based classification model for Parkinson’s disease. Our proposed method is one such good example giving faster and more accurate results for the classification of Parkinson’s disease patients with excellent accuracy of 94.87%. Based on the attributes of the dataset of the patient, the model can be used for the identification of Parkinsonism's. We have also compared the results with other existing approaches like Linear Discriminant Analysis, Support Vector Machine, K-Nearest Neighbor, Decision Tree, Classification and Regression Trees, Random Forest, Linear Regression, Logistic Regression, Multi-Layer Perceptron, and Naive Bayes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.