Extreme value theory provides asymptotically motivated methods for modelling the occurrences of extreme values of oceanographic variables, such as significant wave height at a single location. Problems are often multivariate or spatial in nature, where interest lies in the risk associated with joint occurrences of rare events, e.g. the risk to multiple offshore structures from a storm event. There are two different classes of joint tail behaviour that have very different implications: asymptotic independence suggesting that extreme events are unlikely to occur together, and asymptotic dependence implying that extreme events can occur simultaneously. It is vital to have good diagnostics to identify the appropriate dependence class. If variables are asymptotically independent, incorrectly assuming an asymptotically dependent model can lead to overestimation of the joint risk of extreme events, and hence to higher than necessary design costs of offshore structures. We develop improved diagnostics for differentiating between these two classes, which leads to increased confidence in model selection. Application to samples of North Sea sea-state and storm-peak significant wave height suggests that tail dependence changes with wave direction and distance between spatial locations, and that in most cases asymptotic independence seems to be the more appropriate assumption.
Please cite this article as: M. Kereszturi, J. Tawn, Properties of extremal dependence models built on bivariate max-linearity, Journal of Multivariate Analysis (2016), http://dx.doi.org/10. 1016/j.jmva.2016.12.001 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Properties of extremal dependence models built on bivariate max-linearityMónika Kereszturi * and Jonathan Tawn STOR-i Centre for Doctoral Training, Lancaster University, UK AbstractBivariate max-linear models provide a core building block for characterizing bivariate max-stable distributions. The limiting distribution of marginally normalized component-wise maxima of bivariate max-linear models can be dependent (asymptotically dependent) or independent (asymptotically independent). However, for modeling bivariate extremes they have weaknesses in that they are exactly max-stable with no penultimate form of convergence to asymptotic dependence, and asymptotic independence arises if and only if the bivariate max-linear model is independent. In this work we present more realistic structures for describing bivariate extremes. We show that these models are built on bivariate max-linearity but are much more general. In particular, we present models that are dependent but asymptotically independent and others that are asymptotically dependent but have penultimate forms. We characterize the limiting behavior of these models using two new different angular measures in a radial-angular representation that reveal more structure than existing measures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.