The title compound 4 is a trisolvated monomer 4&3THF in THF solution and dimerizes endothermically to form (4&THF)2 with a strongly positive (!) dimerization entropy in toluene as the solvent. In the absence of electron-pair donor ligands, 4 aggregates (>dimer) in hydrocarbon solutions. These results followed from the (13)C-α splitting patterns and the magnitudes of the one-bond (13)C,(6)Li NMR coupling constants in combination with lithiation NMR shifts as secondary NMR criteria. The rate constants of cis/trans sp(2)-stereoinversion could be measured on the (1)H NMR time scale in THF, in which solvent the preinversion lifetime is 0.24 s at 25 °C. This inversion proceeds according to the pseudomonomolecular, ionic mechanism with the typical, strongly negative pseudoactivation entropy. In a different mechanism, the lifetimes are much longer at 25 °C for the dimer (4&t-BuOMe)2 in toluene (ca. 2.5 min) and for donor-free, aggregated 4 in hexane solution (roughly 1 min). The olefinic interproton two-bond coupling constants (2)JH,H of the H2C═CLi part are proposed as an indicator of microsolvation at Li, because they were found to increase linearly with the "explicit" solvation of α-arylvinyllithiums by 0, 1, 2, and 3 electron-pair donor ligands.
SummaryThe β-unsubstituted title compound dissolves in THF as a uniformly trisolvated monomer, whereas it forms exclusively disolvated monomers in tert-butyl methyl ether, Et2O, TMEDA, or toluene with TMEDA (1.4 equiv). This was established at low temperatures through the observation of separated NMR signals for free and lithium-coordinated ligands and/or through the patterns and magnitudes of 13C,6Li NMR coupling constants. An aggregated form was observed only with Et2O (2 equiv) in toluene as the solvent. The olefinic geminal interproton coupling constants of the H2C= part can be used as a secondary criterion to differentiate between these differently solvated ground-states (3, 2, or <2 coordinated ligands per Li). Due to a kinetic trisolvation privilege of THF, the cis/trans sp2-stereoinversion rates could be measured through analyses of 1H NMR line broadening and coalescence only in THF as the solvent: The pseudomonomolecular (because THF-catalyzed), ionic mechanism is initialized by a C–Li bond heterolysis with the transient immobilization of one additional THF ligand, followed by stereoinversion of the quasi-sp2-hybridized carbanionic center in cooperation with a “conducted tour” migration of Li+(THF)4 along the α-aryl group within the solvent-separated ion pair.
Kinetic studies are a suitable tool to disclose the role of tiny reagent fractions. The title compound 2 reacted in a kinetic reaction order of 0.5 (square root of its concentration) with an excess of the electrophiles ClSiMe, 1-bromobutane (n-BuBr), or 1-iodobutane (n-BuI) at 32 °C in EtO or in hydrocarbon solvents. This revealed that the tiny (NMR-invisible) amount of a deaggregated equilibrium component (presumably monomeric 2) was the reactive species, whereas the disolvated dimer 2 was only indirectly involved as a supply depot. Selectivity data (relative rate constants κ) were collected from competition experiments with the faster reactions of 2 in THF and the addition reactions of 2 to carbonyl compounds. This provided the rate sequences of EtC═O > dicyclopropyl ketone > t-Bu-C(═O)-Ph > diisopropyl ketone ≫ t-BuC═O > ClSiMe > n-BuI > n-BuBr ≈ (bromomethyl)cyclopropane (but t-BuC═O < ClSiMe in THF only) and also of cyclopropanecarbaldehyde > acetone ≥ t-Bu-CH═O. It is suggested that a deceivingly depressed selectivity (1 < κ < k/k), caused by inefficient microscopic mixing of a reagent X with two competing substrates A and B, may become evident toward zero deviation from the correlation line of the usual inverse (1/T) linear temperature dependence of ln κ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.