Defects increase the cost and duration of construction projects. Automating defect detection would reduce documentation efforts that are necessary to decrease the risk of defects delaying construction projects. Since concrete is a widely used construction material, this work focuses on detecting honeycombs, a substantial defect in concrete structures that may even affect structural integrity. First, images were compared that were either scraped from the web or obtained from actual practice. The results demonstrate that web images represent just a selection of honeycombs and do not capture the complete variance. Second, Mask R-CNN and EfficientNet-B0 were trained for honeycomb detection to evaluate instance segmentation and patch-based classification, respectively achieving 47.7% precision and 34.2% recall as well as 68.5% precision and 55.7% recall. Although the performance of those models is not sufficient for completely automated defect detection, the models could be used for active learning integrated into defect documentation systems. In conclusion, CNNs can assist detecting honeycombs in concrete.
In this work, we present a method for landmark retrieval that utilizes global and local features. A Siamese network is used for global feature extraction and metric learning, which gives an initial ranking of the landmark search. We utilize the extracted feature maps from the Siamese architecture as local descriptors, the search results are then further refined using a cosine similarity between local descriptors. We conduct a deeper analysis of the Google Landmark Dataset, which is used for evaluation, and augment the dataset to handle various intra-class variances. Furthermore, we conduct several experiments to compare the effects of transfer learning and metric learning, as well as experiments using other local descriptors. We show that a re-ranking using local features can improve the search results. We believe that the proposed local feature extraction using cosine similarity is a simple approach that can be extended to many other retrieval tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.