This micromorphological, chemical and ultrastructural study is a continuation of research conducted on the section Lepidorhiza . The Bulbophyllum echinolabium flowers comprised features that characterize a sapromyophilous syndrome, having large, glistening parts that emit an intense scent of rotten meat. The secretory activity was described in the hypochile (nectary in longitudinal groove and in the prickles) and the epichile (putative osmophore). The ultrastructural studies revealed a dense cytoplasm in the epidermis and subepidermal tissue with large nuclei and numerous mitochondria, the profiles of SER and RER, and dictyosomes. Large amounts of heterogeneous residues of secreted material (possibly phenolic) were present on the cuticle surface, similar to the unusual prominent periplasmic space with flocculent secretory material. The chemical analysis (GC/MS) of the scent profile of lips comprised carbohydrates and their derivatives (29.55% of all compounds), amino acids (1.66%), lipids (8.04%) and other organic compounds (60.73%). A great number of identified compounds are Diptera attractants (mainly Milichiidae, Tephritidae, Drosophilidae, Muscidae, Sarcophagidae, Tachinidae). The examination of visual and olfactory features indicates correlation between colour of flowers and the type of olfactory mimicry, where a dark colour labellum emits strong smell of rotten waste.
Current and expected changes in global climate are major threat for biological diversity affecting individuals, communities and ecosystems. However, there is no general trend in the plants response to the climate change. The aim of present study was to evaluate impact of the future climate changes on the distribution of holomycotrophic orchid species using ecological niche modeling approach. Three different scenarios of future climate changes were tested to obtain the most comprehensive insight in the possible habitat loss of 16 holomycotrophic orchids. The extinction of Cephalanthera austiniae was predicted in all analyses. The coverage of suitable niches of Pogoniopsis schenckii will decrease to 1–30% of its current extent. The reduction of at least 50% of climatic niche of Erythrorchis cassythoides and Limodorum abortivum will be observed. In turn, the coverage of suitable niches of Hexalectris spicata, Uleiorchis ulaei and Wullschlaegelia calcarata may be even 16–74 times larger than in the present time. The conducted niche modeling and analysis of the similarity of their climatic tolerance showed instead that the future modification of the coverage of their suitable niches will not be unified and the future climate changes may be not so harmful for holomycotrophic orchids as expected.
Floral morphological adaptations and composition of secretions aim to ensure reproductive success. Maxillariella is part of the largest subtribe of Orchidaceae, and Maxillariella spp. are important components of the orchid flora of the Neotropics. The aim of this paper was to provide a detailed study of the reproductive biology of three morphologically and geographically distinct species: M. sanguinea, M. variabilis and M. vulcanica. For many years, species in this group were considered rewardless, but several studies have revealed that lips of some species may secrete resins. However, most published research has mainly focused on investigating either micromorphology (SEM, TEM, histochemistry) or fragrance composition (GC–MS). In this study, we make the first attempt to investigate Maxillariella flowers in a more comparative manner by combining both aspects. In all investigated species we reported the presence of resins with lipids, sugars and/or proteins, suggesting a potential role as a food reward. Scant quantities of residues indicate that they are produced periodically in small quantities. Chemical analysis revealed significant differences between species, however, the presence of some compounds was constant. Cycloartenal and cycloartenol (main ingredients of resin and wax-like material in some Maxillariinae) were not been found.
Ornithophily has been long speculated to occur in the subtribe Maxillariinae (Orchidaceae), relying either solely on micromorphological analyses or scarce field observations of undefined species. In Guatemala we were able to observe regular visits of the azure-crowned hummingbirds feeding on flowers of Ornithidium fulgens. These observations have led us to investigation of floral attractants by means of scanning and transmission microscopy, histochemical and chemical analyses (GC–MS). Conducted investigation revealed that the epidermis of basal protuberance of column-foot has features proving the secretory activity and that secreted nectar is sucrose-dominant. Slight secretion on the middle part of the lip is puzzling. The presence of other potential pollinators has not been reported. Based on the results of this study, we confirmed that the flowers of O. fulgens meet all criteria of ornithophily and thus that the hypothesis about bird pollination in the subtribe Maxillariinae is proven. The presented results confirm that the previously described floral features predicting the bird pollination in this group are justified. This strengthens the theory about floral adaptations to different pollinators and gives valid reasons to consider species with flowers with a certain set of traits as ornithophilous, even in the absence of the pollination observation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.