This study presents the application of artificial neural networks (ANN) and least square support vector machine (LS-SVM) for prediction of Marshall parameters obtained from Marshall tests for waste polyethylene (PE) modified bituminous mixtures. Waste polyethylene in the form of fibres processed from utilized milk packets has been used to modify the bituminous mixes in order to improve their engineering properties. Marshall tests were carried out on mix specimens with variations in polyethylene and bitumen contents. It has been observed that the addition of waste polyethylene results in the improvement of Marshall characteristics such as stability, flow value and air voids, used to evaluate a bituminous mix. The proposed neural network (NN) model uses the quantities of ingredients used for preparation of Marshall specimens such as polyethylene, bitumen and aggregate in order to predict the Marshall stability, flow value and air voids obtained from the tests. Out of two techniques used, the NN based model is found to be compact, reliable and predictable when compared with LS-SVM model. A sensitivity analysis has been performed to identify the importance of the parameters considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.