Infection of Chlorella NC64A cells by PBCV-1 produces a rapid depolarization of the host probably by incorporation of a viral-encoded K(+) channel (Kcv) into the host membrane. To examine the effect of an elevated conductance, we monitored the virus-stimulated efflux of K(+) from the chlorella cells. The results indicate that all 8 chlorella viruses tested evoked a host specific K(+) efflux with a concomitant decrease in the intracellular K(+). This K(+) efflux is partially reduced by blockers of the Kcv channel. Qualitatively these results support the hypothesis that depolarization and K(+) efflux are at least partially mediated by Kcv. The virus-triggered K(+) efflux occurs in the same time frame as host cell wall degradation and ejection of viral DNA. Therefore, it is reasonable to postulate that loss of K(+) and associated water fluxes from the host lower the pressure barrier to aid ejection of DNA from the virus particles into the host.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.