Rationale: Cardiac tissue engineering should provide "realistic" in vitro heart muscle models and surrogate tissue for myocardial repair. For either application, engineered myocardium should display features of native myocardium, including terminal differentiation, organotypic maturation, and hypertrophic growth.Objective: To test the hypothesis that 3D-engineered heart tissue (EHT) culture supports (1) terminal differentiation as well as (2) organotypic assembly and maturation of immature cardiomyocytes, and (3) constitutes a methodological platform to investigate mechanisms underlying hypertrophic growth. Methods and Results:We generated EHTs from neonatal rat cardiomyocytes and compared morphological and molecular properties of EHT and native myocardium from fetal, neonatal, and adult rats. We made the following key observations: cardiomyocytes in EHT (1) gained a high level of binucleation in the absence of notable cytokinesis, (2) regained a rod-shape and anisotropic sarcomere organization, (3) demonstrated a fetal-to-adult gene expression pattern, and (4) responded to distinct hypertrophic stimuli with concentric or eccentric hypertrophy and reexpression of fetal genes. The process of terminal differentiation and maturation (culture days 7-12) was preceded by a tissue consolidation phase (culture days 0 -7) with substantial cardiomyocyte apoptosis and dynamic extracellular matrix restructuring. Conclusions:This study documents the propensity of immature cardiomyocytes to terminally differentiate and mature in EHT in a remarkably organotypic manner. It moreover provides the rationale for the utility of the EHT technology as a methodological bridge between 2D cell culture and animal models. (Circ Res. 2011;109:1105-1114.) Key Words: cardiac myocytes Ⅲ caspase activation Ⅲ extracellular matrix Ⅲ maturation Ⅲ hypertrophy Ⅲ sarcomere Ⅲ tissue engineering D ifferent myocardial tissue engineering formats have been developed throughout the past decade. 1 However, a low degree of cell maturation remains a key caveat in cardiac muscle engineering. A detailed understanding of "developmental" processes in tissue engineered myocardium probably is essential to guide tissue formation and maturation in vitro and to enhance the applicability of tissue engineered myocardium in substance screening, target validation, and tissue repair.Normal heart muscle growth encompasses processes of terminal differentiation and maturation by hypertrophic growth, leading to the formation of binucleated and rodshaped myocytes. 2 Physiological maturation entails a characteristic shift in gene expression, including a reduction of transcripts encoding for fetal isoforms of myofibrillar proteins while the proportion of adult isoforms increases. 3 Terminal differentiation, for example, withdrawal from the cell cycle, is another hallmark of advanced maturation already reached very early during development. 4 Cardiomyocyte monolayer cultures show neither the distinct morphological (rod-shaped) nor the molecular (adult gene expression program)...
The upregulation of RGS4 in failing human myocardium diminishes Gq/11-mediated signalling and can be involved in the desensitization of Gq/11-mediated positive inotropic effects.
In human heart failure the positive inotropic and cAMP-elevating effects of both beta-adrenoceptor agonists and phosphodiesterase inhibitors are diminished. This has been explained at least in part by an increase in the inhibitory signal-transducing G protein (Gi) and unchanged stimulatory G protein (Gs). In the present study we determined the mRNA expression pattern of the alpha subunits of Gi-1, Gi-2, Gi-3, and Gs in myocardial tissue samples of patients undergoing heart transplantation. Northern blot analysis of total RNA extracted from left ventricles with 32P-labeled cDNAs demonstrated expression of Gi alpha-2, Gi alpha-3, and Gs alpha mRNA. In contrast, Gi alpha-1 mRNA was not detectable. To investigate whether the increased ratio of Gi/Gs might be due to altered gene expression, we compared mRNA levels of Gi alpha-2, Gi alpha-3, and Gs alpha in left ventricular myocardium from failing hearts with idiopathic dilated cardiomyopathy (n = 8) and ischemic cardiomyopathy (n = 6) and from nonfailing hearts from transplant donors (n = 8). Compared with nonfailing control hearts, the Gi alpha-2 mRNA was increased by 75 +/- 26% (p less than 0.05) in idiopathic dilated cardiomyopathy hearts and 90 +/- 26% (p less than 0.05) in ischemic cardiomyopathy hearts. Gi alpha-3 and Gs alpha mRNA levels were similar in the three groups. The results suggest that as in other mammalian species, Gi alpha-2 and Gi alpha-3 mRNA are the predominant Gi alpha mRNA subtypes in human ventricular myocardium.(ABSTRACT TRUNCATED AT 250 WORDS)
The present study was performed to compare the effects of the new positive inotropic phosphodiesterase III inhibitors pimobendan, adibendan, and saterinone on the isometric force of contraction in electrically driven ventricular trabeculae carneae isolated from explanted failing (end-stage myocardial failure) with those from nonfailing (prospective organ donors) human hearts. In preparations from nonfailing hearts the phosphodiesterase inhibitors, as well as the beta-adrenoceptor agonist isoprenaline, the cardiac glycoside dihydro-ouabain, and calcium, which were studied for comparison, revealed pronounced positive inotropic effects. The maximal effects of pimobendan, adibendan, and saterinone amounted to 56%, 36% and 45%, respectively, of the maximal effect of calcium. In contrast, in preparations from failing hearts the phosphodiesterase III inhibitors failed to significantly increase the force of contraction and the effect of isoprenaline was markedly reduced. The effects of dihydroouabain and calcium were almost unaltered. The diminished effects of isoprenaline were restored by the concomitant application of phosphodiesterase inhibitors. To elucidate the underlying mechanism of the lack of effect of the phosphodiesterase III inhibitors in the failing heart we also investigated the inhibitory effects of these compounds on the activities of the phosphodiesterase isoenzymes I-III separated by DEAE-cellulose chromatography from both kinds of myocardial tissue. Furthermore, the effects of pimobendan and isoprenaline on the content of cyclic adenosine monophosphate (determined by radioimmunoassays) of intact contracting trabeculae were studied. The lack of effect of the phosphodiesterase inhibitors in failing human hearts could not be explained by an altered phosphodiesterase inhibition, since the properties of the phosphodiesterase isoenzymes I-III and also the inhibitory effects of the phosphodiesterase inhibitors on these isoenzymes did not differ between failing and nonfailing human myocardial tissue. Instead, it may be due to a diminished formation of cyclic adenosine monophosphate in failing hearts, presumably caused mainly by a defect in receptor-adenylate cyclase coupling at least in idiopathic dilated cardiomyopathy. Both the basal and the pimobendan-stimulated or isoprenaline-stimulated contents of cyclic adenosine monophosphate of intact contracting trabeculae from failing hearts were decreased compared with the levels in nonfailing hearts. However, under the combined action of isoprenaline and pimobendan the cyclic adenosine monophosphate level reached values as high as with each compound alone in nonfailing preparations, and in addition the positive inotropic effect of isoprenaline was restored. These findings may have important clinical implications. Along with the elevated levels of circulating catecholamines the positive inotropic effects of the phosphodiesterase inhibitors may be maintained in patients with heart failure.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.