Centrosomin (Cnn) is a required core component in mitotic centrosomes during syncytial development and the presence of Cnn at centrosomes has become synonymous with fully functional centrosomes in Drosophila melanogaster. Previous studies of Cnn have attributed this embryonic function to a single isoform or splice variant. In this study, we present new evidence that significantly increases the complexity of cnn. Rather than a single isoform, Cnn function can be attributed to two unique classes of proteins that comprise a total of at least 10 encoded protein isoforms. We present the initial characterization of a new class of Cnn short isoforms required for centrosome function during gametogenesis and embryogenesis. We also introduce new evidence for a complex mix of Cnn isoforms present during early embryogenesis. Finally, we reexamine cnn mutations, in light of the short isoforms, and find previously overlooked differences attributable to allele-specific mutant phenotypes. This study addresses several questions surrounding Cnn function at the centrosome during embryogenesis and shows that cnn function cannot be ascribed to a single protein.
The physical and functional interaction between the transcription factor p53 and its negative regulatory partner protein Hdm2 (Mdm2 in mouse) is a key point of convergence of multiple signaling pathways that regulates cell proliferation and survival. hdm2 mRNA transcription is induced by p53, forming the basis of an auto-regulatory feedback loop. Growth and survival factor-activated Ras-Raf-MEK-ERK signaling can also regulate Hdm2 expression independently of p53, contributing to the pro-survival effect of these factors. In murine fibroblasts, this occurs through the regulation of mdm2 mRNA transcription. Here we show that, in human breast cancer epithelial cells, MEK-dependent regulation of Hdm2 expression also occurs at a post-transcriptional level. Pharmacological blockade of MEK activity in T47D cells inhibits Hdm2 protein synthesis by 80 -90%. This occurs in the absence of changes in the expression of the major hdm2-P1 mRNA transcript and only an ϳ40% reduction in hdm2-P2 transcript levels. The amounts of both transcripts that are associated with polyribosomes and are, hence, being actively translated are reduced by >80% by the MEK inhibitor, U0126. We show here that this is due to the inhibition of hdm2 mRNA export from the nucleus when MEK activity is inhibited. In MCF-7 breast cancer cells that express wild-type p53, Hdm2 is required to suppress p53-dependent transcription when MEK kinase is active. Regulation of the nuclear export of hdm2 mRNA provides, therefore, a mechanism whereby mitogen-stimulated cells avoid p53-dependent cell cycle arrest or apoptosis by maintaining the dynamic equilibrium of the Hdm2-p53 feedback loop.
Deletions, commonly referred to as deficiencies by Drosophila geneticists, are valuable tools for mapping genes and for genetic pathway discovery via dose-dependent suppressor and enhancer screens. More recently, it has become clear that deviations from normal gene dosage are associated with multiple disorders in a range of species including humans. While we are beginning to understand some of the transcriptional effects brought about by gene dosage changes and the chromosome rearrangement breakpoints associated with them, much of this work relies on isolated examples. We have systematically examined deficiencies of the left arm of chromosome 2 and characterize gene-by-gene dosage responses that vary from collapsed expression through modest partial dosage compensation to full or even over compensation. We found negligible long-range effects of creating novel chromosome domains at deletion breakpoints, suggesting that cases of gene regulation due to altered nuclear architecture are rare. These rare cases include trans de-repression when deficiencies delete chromatin characterized as repressive in other studies. Generally, effects of breakpoints on expression are promoter proximal (~100bp) or in the gene body. Effects of deficiencies genome-wide are in genes with regulatory relationships to genes within the deleted segments, highlighting the subtle expression network defects in these sensitized genetic backgrounds.
Cryopreservation of murine spermatozoa would provide an efficient method for preserving important genotypes. However, to date such methods have resulted in low survivals with significant variability. To address this issue, a series of five experiments was performed to determine the cryobiological characteristics of murine spermatozoa. Experiments 1 and 2 investigated the effect of Percoll separation on the hydraulic conductivity (L(p)) of murine spermatozoa. Both Percoll separation and cryoprotective agents (CPAs) decreased the L(p). However, these effects were not additive. Experiment 3 was performed to determine the effect of temperature on L(p) in the presence of cryoprotectants (L(p)(CPA)), cryoprotectant permeability (P(CPA)), and the reflection coefficient (sigma) in spermatozoa from both ICR and B6C3F1 mice. Permeability parameters decreased as temperature decreased, and permeability characteristics differed between strains. In experiments 4 and 5, theoretical simulations for CPA addition and removal were developed and empirically tested. Strain-specific methods for CPA addition and removal based upon the fundamental cryobiological characteristics of murine spermatozoa resulted in higher survivals than current methods or procedures, which were used as controls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.