This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues.Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. a b s t r a c tThe increasing availability and use of sports supplements is of concern as highlighted by a number of studies reporting endocrine disruptor contamination in such products. The health food supplement market, including sport supplements, is growing across the Developed World. Therefore, the need to ensure the quality and safety of sport supplements for the consumer is essential. The development and validation of two reporter gene assays coupled with solid phase sample preparation enabling the detection of estrogenic and androgenic constituents in sport supplements is reported. Both assays were shown to be of high sensitivity with the estrogen and androgen reporter gene assays having an EC 50 of 0.01 ng mL −1 and 0.16 ng mL −1 respectively.The developed assays were applied in a survey of 63 sport supplements samples obtained across the Island of Ireland with an additional seven reference samples previously investigated using LC-MS/MS. Androgen and estrogen bio-activity was found in 71% of the investigated samples. Bio-activity profiling was further broken down into agonists, partial agonists and antagonists. Supplements (13) with the strongest estrogenic bio-activity were chosen for further investigation. LC-MS/MS analysis of these samples determined the presence of phytoestrogens in seven of them. Supplements (38) with androgen bio-activity were also selected for further investigation. Androgen agonist bio-activity was detected in 12 supplements, antagonistic bio-activity was detected in 16 and partial antagonistic bio-activity was detected in 10. A further group of supplements (7) did not present androgenic bio-activity when tested alone but enhanced the androgenic agonist bio-activity of dihydrotestosterone when combined.The developed assays offer advantages in detection of known, unknown and low-level mixtures of endocrine disruptors over existing analytical screening techniques. For the detection and identification of constituent hormonally active compounds the combination of biological and physio-chemical techniques is optimal.
Background: Certain types of hair products are more commonly used by Black women.Studies show hair products contain several endocrine disrupting chemicals that are associated with adverse health outcomes. As chemical mixtures of endocrine disruptors, hair products may be hormonally active, but this remains unclear.Objective: To assess hormonal activity of commonly used Black hair products. Methods:We identified 6 commonly used hair products (used by >10% of the population) from the Greater New York Hair Products Study. We used reporter gene assays (RGAs) incorporating natural steroid receptors to evaluate estrogenic, androgenic, progestogenic, and glucocorticoid hormonal bioactivity employing an extraction method using bond elution prior to RGA assessment at dilutions from 50-500.Results: All products displayed hormonal activity, varying in the amount and effect.Three samples showed estrogen agonist properties at levels from 12.5-20ng/g estradiol equivalent concentrations (EEQ). All but one sample showed androgen antagonist properties at levels from 20-25ng/g androgen equivalent concentrations (AEQ). Four samples showed antagonistic and agonistic properties to progesterone and glucocorticoid.Significance: Hair products commonly used by Black women showed hormonal activity.Given their frequent use, exposure to hormonally active products could have implications for health outcomes and contribute to reproductive and metabolic health disparities.
The main known groups of mycotoxins are aflatoxins, fumonisins, ochratoxins, type A trichothecenes (T-2 toxin and HT-2 toxin), type B trichothecenes (deoxynivalenol), and zearalenones. They are harmful to humans, domestic animals, and livestock. In Europe, maximum permitted limits for aflatoxin B1 are set, and guidance levels are recommended for the other mycotoxins. This study applied biochip array technology to semiquantitative multimycotoxin screening at different levels to facilitate the verification of the compliance of feed material with acceptable safety standards. This application was developed and validated based on European Commission Decision No. 2002/657/EC. After a single generic sample-preparation method, simultaneous competitive chemiluminescent immunoassays were used and applied to the Evidence Investigator analyzer. The r and within-laboratory R values showed low overall CVs (10.6 and 11.6%, respectively). Low matrix effect and, consequently, low decision limits and detection capabilities proved the high sensitivity of the technology. The overall average recovery was 104%. Samples (n = 16) investigated within the Food Analysis Performance Assessment Scheme (FAPAS) program showed excellent correlation to assigned values. FAPAS proficiency-testing feed samples (n = 10) were within the schemes' z-score ±2 range. The authentic feed samples survey showed excellent correlation with LC-MS/MS. This application is, therefore, reliable and represents an innovative, cost-effective, and multianalytical tool for mycotoxin screening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.